THE CURVE AND p-ADIC HODGE THEORY

LAURENT FARGUES

Contents

1. Introduction	2
1.1. What is a <i>p</i> -adic Hodge structure?	2
1.2. Real Hodge structure	2
2. The curve Y	4
2.1. Affinoid space and adic space	5
2.2. Holomorphic function of the variable p	6
2.3. Newton polygon	7
2.4. Zeros of holomorphic functions	8
2.5. Perfectoid fields and tilting	9
2.6. Classical points	11
2.7. Localization of zeros	11
2.8. Parametrization of classical points	12
3. The curve X	13
3.1. The fundamental exact sequence	14
3.2. Vector bundles	16
3.3. Harder-Narasimhan filtrations	16
4. Classification of vector bundles	19
4.1. Construction of some vector bundles	19
4.2. From isocrystals to vector bundles	21
5. Periods of <i>p</i> -divisible groups	21
5.1. Periods in characteristic p	21
5.2. The covectors	22
5.3. Period isomorphism in characteristic p	23
5.4. Periods in unequal characteristic	24
6. Topics on classification theorem	25
6.1. Lubin-Tate space	25
6.2. Proof of the classification for rank two vector bundles	27
6.3. Weakly admissible implies admissible	27

ABSTRACT. The main theme of this course will be to understand and give a meaning to the notion of a *p*-adic Hodge structure. Starting with the work of Fontaine, who introduced many of the basic notions in the domain, it took many years to understand the exact definition of a *p*-adic Hodge structure. We now have the right definition: this involves the fundamental curve of *p*-adic Hodge theory and vector bundles on it. In the course I will explain the construction and basic properties of the curve. I will moreover explain the proof of the classification of vector bundles theorem on the curve. As an application I will explain the proof of weakly admissible implies admissible. In the meanwhile I will review many objects that show up in *p*-adic Hodge theory like *p*-divisible groups and their moduli spaces, Hodge-Tate and de Rham period morphisms, and filtered φ -modules.

This is a note of the lectures in MCM, Beijing from 2019/11/01 to 2020/01/10.

Date: Recorded by Shenxing Zhang. Not revised yet.

LAURENT FARGUES

1. INTRODUCTION

1.1. What is a *p*-adic Hodge structure? Recall a *real pure Hodge structure* of weight $w \in \mathbb{Z}$ is a finitely dimensional real vector space V, endowed with a bigrading

$$V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$$

such that $\overline{V^{p,q}} = V^{q,p}$. For example, let X/\mathbb{C} be a proper smooth algebraic variety. Then $\mathrm{H}^{i}(X(\mathbb{C}),\mathbb{R})$ is equipped with a real Hodge structure of weight *i* as

$$\mathrm{H}^{i}(X(\mathbb{C}),\mathbb{R})_{\mathbb{C}} = \bigoplus_{p+q=i} \mathrm{H}^{q}(X,\Omega^{p}).$$

In p-adic setting, there are plenty of different structures and results

- Hodge-Tate Galois representations;
- crystalline representations;
- de Rham representations;
- filtered φ -modules à la Fontaine;
- Breuil-Kisin modules;
- (φ, Γ) -modules;
- comparison theorems for proper smooth algebraic variety over \mathbb{Q}_p .

This is a mess! We should back to real case to find the solution.

1.2. **Real Hodge structure.** Recall Simpson's geometric point of view of twists. Denote

$$\widetilde{\mathbb{P}}^1_{\mathbb{R}} = \mathbb{P}^1_{\mathbb{C}} / \left\{ z \sim -\frac{1}{\bar{z}} \right\}$$

where z is the coordinate on $\mathbb{P}^1_{\mathbb{C}}$. This is a conic curve without real point, equipped with ∞ . Obviouly $\mathbb{P}^1_{\mathbb{C}}$ is a double cover of $\widetilde{\mathbb{P}}^1_{\mathbb{R}}$.

The action of \mathbb{C}^{\times} on $\mathbb{P}^{1}_{\mathbb{C}}$ as $\lambda z = \lambda z$ descends to an action of U(1) on $\mathbb{P}^{1}_{\mathbb{R}}$. Then ∞ is the unique fixed point of this action and the unque point that has a finite orbit.

Consider the vector bundles on $\widetilde{\mathbb{P}}^1_{\mathbb{R}}$. For $\lambda \in \frac{1}{2}\mathbb{Z}$, define

$$\mathcal{O}_{\widetilde{\mathbb{P}}^{1}_{\mathbb{R}}}(\lambda) = \begin{cases} \pi_{*}\mathcal{O}_{\mathbb{P}^{1}_{\mathbb{C}}}(2\lambda), & \lambda \notin \mathbb{Z}; \\ \mathcal{L} \text{ such that } \pi^{*}\mathcal{L} = \mathcal{O}_{\mathbb{P}^{1}_{\mathbb{C}}}(2\lambda), & \lambda \in \mathbb{Z}. \end{cases}$$

Here the *slope* of $\mathcal{O}_{\widetilde{\mathbb{P}}^1_{\mathfrak{m}}}(\lambda)$ is λ .

Proposition 1.1. There is a bijection between the set of finite decreasing half integer sequences

$$\left\{\lambda_1 \geq \cdots \geq \lambda_n \mid \lambda_i \in \frac{1}{2}\mathbb{Z}, n \in \mathbb{N}\right\}$$

and the isomorphic classes of vector bundles on $\widetilde{\mathbb{P}}^1_{\mathbb{R}}$ as

$$(\lambda_i) \longmapsto \left[\bigoplus_i \mathcal{O}_{\widetilde{\mathbb{P}}^1_{\mathbb{R}}}(\lambda_i) \right].$$

In particular,

$$\begin{split} \mathsf{Vect}_{\mathbb{R}} & \xrightarrow{\sim} \Big\{ slope \ 0 \ semisimple \ vector \ bundles \ over \ \widetilde{\mathbb{P}}^1_{\mathbb{R}} \Big\} \\ V & \longmapsto V \otimes \mathcal{O}_{\widetilde{\mathbb{P}}^1_{\mathbb{R}}} \\ \mathrm{H}^0(\widetilde{\mathbb{P}}^1_{\mathbb{R}}, \mathcal{E}) & \longleftrightarrow \ \mathcal{E}. \end{split}$$

That is to say, every Harder-Narasimhan filtration of vector bundles are split and every semisimple vector bundle of pure slope are $\mathcal{O}_{\widetilde{\mathbb{P}}_n^1}(\lambda)^n$.

Let V be a real vector space with a filtration $\operatorname{Fil}^{\bullet}$ on $V_{\mathbb{C}} = V \otimes_{\mathbb{R}} \mathbb{C}$. Denote by t the uniformization of $\widetilde{\mathbb{P}}_{\mathbb{R}}^{1}$ at ∞ and

$$V_{\mathbb{C}}((t)) = V \otimes_{\mathbb{R}} \mathbb{C}((t)) = V_{\mathbb{C}} \otimes_{\mathbb{C}} \mathbb{C}((t)).$$

There is a canonical filtration $\{t^k \mathbb{C}[[t]]\}_k$ on $\mathbb{C}((t))$, which induces a filtration on $V_{\mathbb{C}}((t))$ as

$$\operatorname{Fil}^{k}(V_{\mathbb{C}}((t))) = \sum_{i \in \mathbb{Z}} \operatorname{Fil}^{i} V_{\mathbb{C}} \otimes_{\mathbb{C}} t^{k-i} \mathbb{C}[[t]].$$

Then

$$\widehat{\mathcal{O}}_{\widetilde{\mathbb{P}}^1_{\mathbb{R}},\infty} = \mathbb{C}[[t]], \quad (V \otimes_{\mathbb{R}} \mathcal{O}_{\widetilde{\mathbb{P}}^1_{\mathbb{R}}})^{\wedge}_{\infty} = V_{\mathbb{C}}((t))$$

and the $\mathbb{C}[[t]]$ -lattice

 $\Lambda := \operatorname{Fil}^0(V_{\mathbb{C}}((t))) \subset V_{\mathbb{C}}((t))$

defines a *modification* of vector bundles

$$(V \otimes_{\mathbb{R}} \mathcal{O}_{\widetilde{\mathbb{P}}_{\mathbb{R}}^{1}})|_{\widetilde{\mathbb{P}}_{\mathbb{R}}^{1} \setminus \{\infty\}} \xrightarrow{\sim} \mathcal{E}|_{\widetilde{\mathbb{P}}_{\mathbb{R}}^{1} \setminus \{\infty\}},$$

such that $\widehat{\mathcal{E}}_{\infty} = \Lambda$. This is U(1)-equivalent and induces a bijection

$$\{\text{filtrations on } V_{\mathbb{C}}\} \xrightarrow{\sim} \left\{ U(1)\text{-equiv. modif. } V \otimes_{\mathbb{R}} \mathcal{O}_{\widetilde{\mathbb{P}}^{1}_{\mathbb{R}}} \rightsquigarrow \mathcal{E} \right\}$$

and thus

$$\{(V, \operatorname{Fil}^{\bullet} V_{\mathbb{C}})\} \xrightarrow{\sim} \left\{ \begin{array}{c} U(1) \text{-equiv. modif. } \mathcal{E}_1 \rightsquigarrow \mathcal{E}_2 \\ \mathcal{E}_1 \text{ semisimple of slope } 0, U(1) \curvearrowright \operatorname{H}^0(\mathcal{E}_1) \text{ trivially} \end{array} \right\}.$$

Definition 1.2. A *real Hodge structure* is a finitely dimensional real vector space V, endowed with a bigrading decomposition

$$V_{\mathbb{C}} = \bigoplus_{p,q \in \mathbb{Z}} V_{\mathbb{C}}^{p,q},$$

such that $\overline{V^{p,q}} = V^{q,p}$. Thus for any integer w, there is a subspace $V_w \subset V$ such that

$$V_{w,\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q},$$

which is called weight w part of V. If $V = V_w$, V is called *pure of weight* w.

We say $(V, \operatorname{Fil}^{\bullet} V_{\mathbb{C}})$ defines a Hodge struture of weight w if there is a real Hodge struture on V of pure weight w such that $\operatorname{Fil}^{n} \mathbb{V}_{\mathbb{C}} = \bigoplus_{p \geq n} V^{p, w-p}$.

Proposition 1.3. $(V, \operatorname{Fil}^{\bullet} V_{\mathbb{C}})$ defines a weight w Hodge struture if and only if \mathcal{E}_2 is semisimple of slope w/2 in the corresponding modification.

This induces a bijection between the set of weight w pure real Hodge structures and the set of U(1)-equivalent modifications $\mathcal{E}_1 \rightsquigarrow \mathcal{E}_2$ on $\widetilde{\mathbb{P}}^1_{\mathbb{R}} \setminus \{\infty\}$, where \mathcal{E}_1 is semisimple of slope 0, \mathcal{E}_2 is semisimple of slope w/2 and U(1) acts on $\mathrm{H}^0(\mathcal{E}_1)$ trivially.

WE are going to do the same in the *p*-adic setting.

LAURENT FARGUES

p-adic setting
the curve $X \curvearrowleft \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$
$B_{\mathrm{dR}}^+ = \widehat{\mathcal{O}}_{X,\infty}$
$\sigma t = \chi_{ m cyc}(\sigma)t, \ t = \log[\epsilon]$
X_{∞}
$igvee_{\lambda} \hat{\mathbb{Z}}$

Thus the vector bundles on X is endowed with $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ -action.

2. The curve Y

There are two versions of the curve.

- X^{ad} adic version analog of *p*-adic Reimann surface,
- X schematical version analog of a proper smooth algebraic curve.

There is an analytification morphism (GAGA) $X^{\text{ad}} \to X$ and an "ample" line bundle $\mathcal{O}(1)$ on X^{ad} such that

$$X = \operatorname{Proj}(\bigoplus_{d \ge 0} \mathrm{H}^{0}(X^{\mathrm{ad}}, \mathcal{O}(d))).$$

Both rely on the construction of an intermediate adic space Y endowed with a "crystalline" Frobenius φ .

Let C be a complete algebraically closed field of characteristic 0. Define the tilt C^{\flat} the inverse limit of C with respect to Frobenius, which is an algebraically closed field of characteristic p. Let B_{dR}^+ be the completion of $\mathbb{A}_{\mathrm{inf}} = W(\mathcal{O}_{C^{\flat}})$ with repect to $(p - [p^{\flat}])$ with quotient field B_{dR} , A_{cris} the completion of divided power of $\mathbb{A}_{\mathrm{inf}}$ and $B_e = B_{\mathrm{cris}}^{\varphi=1}$.

The *p*-adic comparison theorems for crystalline/de Rham/étale cohomology lead one to consider the category of pairs (W_e, W_{dR}^+) where W_e is a free B_e -module and W_{dR}^+ is a free B_{dR}^+ -module such that

$$B_{\mathrm{dR}} \otimes_{B_e} W_e = B_{\mathrm{dR}} \otimes_{B_{\mathrm{tr}}^+} W_{\mathrm{dR}}^+$$

We will construct a curve X such that $B_e = \mathcal{O}(X - \{\infty\}), B_{dR}^+ = \mathcal{O}_{X,\infty}$. The fundamental exact sequence

$$0 \to \mathbb{Q}_p \to B_e \to B_{\mathrm{dR}}/B_{\mathrm{dR}}^+ \to 0$$

tells us the sections. The category of (W_e, W_{dR}^+) corresponds to the category of vector bundles over X. Since $B_e = B_{cris}^{\varphi=1}$, this suggests

$$X^{\mathrm{ad}} = Y^{\mathrm{ad}} / \varphi^{\mathbb{Z}}$$

where $Y^{\text{ad}} = \text{Spa}(A_{\text{inf}}) - (p[p^{\flat}]).$

In general, let E be a discretely valued non-archemedean field with uniformizer π with finite residue field $\mathbb{F}_q = \mathcal{O}_E/\pi$. Let F/\mathbb{F}_q be a perfectoid field, i.e., a perfect field, complete with respect to a non-trivial absolute value $|\cdot|: F \to \mathbb{R}_{\geq 0}$. We will attach to this data a curve $X_{F,E}/E$. More generally, we can define "a family of curves"

$$X_S = (X_{k(s)})_{s \in |S|}$$

for perfectoid S/\mathbb{F}_q . If G is a reductive group over E, one can define a stack

 $\operatorname{Bun}_G: S \to \{G\text{-bundles on } X_S\}.$

We will study the perverse ℓ -adic sheaves on Bun_G.

2.1. Affinoid space and adic space. Let's recall the definition of adic spaces. This is not a prt of the lectures. Let k be a nonarchimedean field and R a topological k-algebra.

- **Definition 2.1.** (1) If there is a subring $R_0 \subset R$ such that $\{aR_0\}_{a \in k^{\times}}$ forms a basis of open neighborhoods of 0, it's called a *Tate k-algebra*. A subset $M \subset R$ is called *bounded* if $M \subset aR_0$ for some $a \in k^{\times}$.
 - (2) An affinoid k-algebra is a pair (R, R^+) consisting of a Tate k-algebra R and open integrally closed subring $R^+ \subset R^\circ$.
 - (3) An affinoid k-algebra (R, R^+) is said to be tft if R is a quotient of $k\langle T_1, \ldots, T_n \rangle$ for some n and $R^+ = R^\circ$.

Definition 2.2. Denote by $X = \text{Spa}(R, R^+)$ the set of equivalent classes of continuous valuations on R, which is ≤ 1 on R^+ . We equip X the topology which has open *rational subsets*

$$U\left(\frac{f_1,\ldots,f_n}{g}\right) = \{x \in X \mid |f_i(x)| \le |g(x)|, \forall x \in X\}$$

as basis, where f_1, \ldots, f_n generates R.

Definition 2.3. A topological space X is called *spectral* if it satisfies the following equivalent properties.

- (1) There is some ring A such that $X \cong \text{Spec}A$.
- (2) X is an inverse limit of finite T_0 spaces.
- (3) X is quasicompact, has a quasicompact topological basis, stable under finite intersections, and every irreducible closed subset has a unique generic point.

Theorem 2.4. The space $\operatorname{Spa}(R, R^+)$ is spectral and $\operatorname{Spa}(R, R^+) \cong \operatorname{Spa}(\widehat{R}, \widehat{R}^+)$.

Theorem 2.5. (1) If $X = \emptyset$, then $\widehat{R} = 0$.

(2) If R is complete and $|f(x)| \neq 0, \forall x \in X$, then f is invertible.

(3) If $|f(x)| \le 1, \forall x \in X$, then $f \in \mathbb{R}^+$.

Consider the topological algebra $R[f_1g^{-1}, \ldots, f_nh^{-1}] \subset R[g^{-1}]$ and denote by B the integral closure of $R^+[f_1g^{-1}, \ldots, f_ng^{-1}]$ in it, then $(R[f_1g^{-1}, \ldots, f_ng^{-1}], B)$ is an affinoid k-algebra with completion $(R\langle f_1g^{-1}, \ldots, f_ng^{-1}\rangle, \widehat{B})$. Then

$$\operatorname{Spa}(R\langle f_1g^{-1},\ldots,f_ng^{-1}\rangle,\widehat{B})\to \operatorname{Spa}(R,R^+)$$

factors through $U\left(\frac{f_1,\ldots,f_n}{g}\right)$ and it satisfies the corresponding universal property. Define presheaves

$$(\mathcal{O}_X(U), \mathcal{O}_X^+(U)) = (R\langle f_1 g^{-1}, \dots, f_n g^{-1} \rangle, \widehat{B})$$

and on general W,

$$\mathcal{O}_X = \varprojlim_{U \subset W} \mathcal{O}_X(U).$$

Moreover $U \cong \text{Spa}(\mathcal{O}_X(U), \mathcal{O}_X^+(U)).$

The stalk $\mathcal{O}_{X,x}$ is a local ring with maximal ideal $\{f \mid f(x) = 0\}$ and $\mathcal{O}_{X,x}^+$ is a local ring with maximal ideal $\{f \mid f(x) < 1\}$.

Definition 2.6. We call R is strongly neotherian if $\widehat{R}\langle T_1, \ldots, T_n \rangle$ is noetherian for any n.

Theorem 2.7. If R is strongly neotherian, then \mathcal{O}_X is a sheaf.

Definition 2.8. Consider triple $(X, \mathcal{O}_X, (|\cdot(x)|, x \in X))$ where (X, \mathcal{O}_X) is a locally ringed space and $|\cdot(x)|$ is a continuous valuation on $\mathcal{O}_{X,x}$ for any $x \in X$. Such triple isomophic to $\operatorname{Spa}(R, R^+)$ where \mathcal{O}_X is a sheaf is called an affinoid adic space.

It is called an *adic space* if it's locally an affinoid adic space.

Proposition 2.9. For affinoid adic space $X = \text{Spa}(R, R^+)$ and any adic space Y over k,

$$\operatorname{Hom}(Y, X) = \operatorname{Hom}((\widehat{R}, \widehat{R}^+), (\mathcal{O}_Y(Y), \mathcal{O}_Y^+(Y))).$$

Example 2.10. Assume that k is complete and algebraically closed. Let $R = k \langle T \rangle$ and $R^+ = R^\circ = k^\circ \langle T \rangle$. Fix a norm $|\cdot| : k \to \mathbb{R}_{\geq 0}$. Then $X = \text{Spa}(R, R^+)$ consists of

(1) The classical point. For $x \in k^{\circ}$,

$$R \longrightarrow \mathbb{R}_{\geq 0}$$
$$f = \sum a_n T^n \longmapsto |f(x)| = |\sum a_n x^n|.$$

(2)(3) The rays of the tree. For $0 \le r \le 1, x \in k^{\circ}$,

$$R \longrightarrow \mathbb{R}_{\geq 0}$$
$$f = \sum a_n (T - x)^n \longmapsto \sup |a_n| r^n = \sup_{y \in k^\circ, |y - x| \leq r} |f(y)|.$$

If r = 0, it is the classical point. If r = 1, it does not depend on x, which is called the Gausspoint.

If $r \in |k^{\times}|$, it's said to be of type (2), otherwise of type (3).

(4) Dead ends of the tree. Let $D_1 \supset D_2 \supset \cdots$ be a sequence of disks with $\cap D_i = \emptyset$. It occurs when k is not spherically complete.

$$R \longrightarrow \mathbb{R}_{\geq 0}$$
$$f \longmapsto \inf_{i} \sup_{x \in D_{i}} |f(x)|.$$
(5) For $\Gamma = \mathbb{R}_{\geq 0} \times \gamma^{\mathbb{Z}}$, where $\gamma = r^{-}$ or $r^{+}(r < 1)$.
$$R \longrightarrow \Gamma \cup \{0\}$$

$$f = \sum a_n (T - x)^n \longmapsto \sup |a_n| \gamma^n.$$

This only depends on the disc D(x, < r) or D(x, r). Thus if $r \notin |k^{\times}|$, it's of type (3). Every rays of point of type (2) correspond a valuation of type (5).

2.2. Holomorphic function of the variable p. Let E be a finite extension of \mathbb{Q}_p with residue field \mathbb{F}_q . As a comparison, we also take $E = \mathbb{F}_q[[t]]$. It is the coefficient field of the p-adic Hodge theory.

Definition 2.11. Define

$$\mathbb{A} = \mathbb{A}_{inf} = \begin{cases} W_{\mathcal{O}_E}(\mathcal{O}_F) = W(\mathcal{O}_F) \otimes_{W(\mathbb{F}_q)} \mathcal{O}_E, & E/\mathbb{Q}_p, \\ \mathcal{O}_F \widehat{\otimes}_{\mathbb{F}_q} \mathcal{O}_E = \mathcal{O}_F[[\pi]], & E = \mathbb{F}_q[[t]]. \end{cases}$$

Then

$$\mathbb{A} = \left\{ \left. \sum_{n \ge 0} [x_n] \pi^n \right| x_n \in \mathcal{O}_F \right\}.$$

Fix $\varpi \in F$ with $0 < |\varpi| < 1$. Then \mathbb{A} is complete under the $(\pi, [\varpi])$ -adic topology. Consider the adic space $\text{Spa}(\mathbb{A}, \mathbb{A})$. It has only one closed point with kernel (π, \mathfrak{m}_F) . Define

$$\mathcal{Y} = \operatorname{Spa}(\mathbb{A}, \mathbb{A})_a = \operatorname{Spa}(\mathbb{A}, \mathbb{A}) \setminus \{ \operatorname{closed point} \} = \operatorname{Spa}(\mathbb{A}, \mathbb{A}) \setminus V(\pi, [\varpi])$$

and an open subspace

$$Y = \operatorname{Spa}(\mathbb{A}, \mathbb{A}) \setminus V(\pi[\varpi]).$$

Here the subscript a indicates we take the analytic points and \mathcal{Y} is not affinoid. Consider the space of holomorphic functions $\mathcal{O}(Y)$. Let

$$\mathbb{A}\left[\frac{1}{\pi}, \frac{1}{[\varpi]}\right] = \left\{ \sum_{n \gg -\infty} [x_n] \pi^n \middle| x_n \in F, \sup |x_n| < +\infty \right\}$$

be the set of holomorphic functions on Y that are meromorphic along $(\pi), ([\varpi])$. For $\rho \in (0,1), f = \sum_{n \gg -\infty} [x_n] \pi^n$, define the Gauss norms

$$|f|_{\rho} := \sup_{n} |x_n| \rho^n = \sup_{|y| \le \rho} f(y).$$

Proposition 2.12. The space

$$B = \mathcal{O}(Y)$$

is the completion of $\mathbb{A}\left[\frac{1}{\pi}, \frac{1}{[\varpi]}\right]$ with respect to $\{|\cdot|_{\rho}\}$.

For compact subset $I \subset (0,1)$, the completion B_I with respect to $\{|\cdot|_{\rho \in I}\}$ is a Banach *E*-algebra and

$$B = \varprojlim_{I \subset (0,1)} B_I$$

is a Fréchet space. In particular, if $I = [\rho_1, \rho_2]$, B_I is the completion with respect to $\{|\cdot|_{\rho_1}, |\cdot|_{\rho_2}\}$.

In the case $E = \mathbb{F}_q[[\pi]],$

$$Y = \mathbb{D}_F^* = \{0 < |\pi| < 1\} \subset \mathbb{A}_F^1$$

and

$$B = \mathcal{O}(Y) = \left\{ \sum_{n \gg -\infty} x_n \pi^n \middle| x_n \in F, \lim_{n \to +\infty} |x_n| \rho^n = 0, \forall \rho \right\}.$$

We have natural maps

The map on the left is locally of finite type, but $\mathbb{D}_F^* \to \operatorname{Spa}(E)$ is not.

Remark 2.13. If $(x_n) \in F^{\mathbb{Z}}$ such that $\lim_{|n| \to +\infty} |x_n| \rho^n = 0, \forall \rho$, then $\sum [x_n] \pi^n \in B$. But not every element can be written in this form.

2.3. Newton polygon.

Proposition 2.14. $|fg|_{\rho} = |f|_{\rho}|g|_{\rho}$, *i.e.*, $|\cdot|$ is a valuation.

For $\rho = q^{-r}, r \in (0, +\infty), |f|_{\rho} = q^{-v_r(f)}$, where

$$v_r(f) := \inf(v(x_n) + nr).$$

Here $v = -\log_q |\cdot|$ on F. Then $r \mapsto v_r(f)$ is a convex function.

LAURENT FARGUES

In the case $E = \mathbb{F}_q[[\pi]], f = \sum x_n \pi^n \in \mathcal{O}(Y)$ defines a Newton polygon Newt(f) the decreasing convex hull of $\{(n, v(x_n))\}$. Then positive slopes of Newt(f) one-to-one correspond to the set of valuations of roots of F on \mathbb{D}_F^* .

Assume E/\mathbb{Q}_p . Recall the Legendre transform gives a bijection between the set of convex decreasing function $\mathbb{R} \to \mathbb{R} \cup \{\infty\}, \neq +\infty$ and the set of concave function $(0, +\infty) \to \mathbb{R} \cup \{-\infty\}, \neq -\infty$ as

$$\mathcal{L}(\varphi)(r) = \inf_{t \in \mathbb{R}} (\varphi(t) + tr),$$
$$\mathcal{L}^{-1}(\psi)(t) = \sup_{r \in (0,\infty)} (\psi(r) - tr).$$

Proposition 2.15. For convex decreasing function $f, g : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$, we have

$$\mathcal{L}(f \circledast g) = \mathcal{L}(f) + \mathcal{L}(g),$$

where

$$(f \circledast g)(x) = \inf_{a+b=x} (f(a) + g(b))$$

The Legendre transform maps polygons to polygons, and the slopes of φ (resp. ψ) one-to-one correspond to the *x*-coordinates of break points of $\mathcal{L}(\varphi)$ (resp. $\mathcal{L}^{-1}(\psi)$).

Proposition 2.16. For nonzero $f \in B$, there is a sequence $\{f_n\}$ in $\mathbb{A}\left[\frac{1}{\pi}, \frac{1}{[\varpi]}\right]$ tending to f. Then for any compact subset $K \subset (0, +\infty)$, there is an integer N such that for any $n \geq N$, $v_r(f) = v_r(f_n)$ for any $r \in K$.

As a corollary, the convex function $r \mapsto v_r(f)$ is a polygon with integral slopes.

Define

Newt
$$(f) := \mathcal{L}^{-1}(r \mapsto v_r(f)).$$

Then

$$\operatorname{Newt}(fg) = \operatorname{Newt}(f) \circledast \operatorname{Newt}(g).$$

Let $I \subset (0,1)$ be a compact subset and $0 \neq f \in B_I$. Denote by Newt_I(f) the part of Newton polygon consisting of the slope in $-\log_q(I)$ part. But $\{v_r(f)\}_{r\in -\log_q(I)}$ do not determine Newt_I(f). For example, $I = \{q^{-r}\}$, we need to know the left and right break point of the slope r part to determine Newt_I(f).

Denote by ∂_l, ∂_r the left/right derivation. Then $(v_r(f), \partial_l v_r(f), \partial_r v_r(f))_{r \in -\log_q(I)}$ determine Newt_I(f). The rank 2 valuations with image in $\mathbb{R} \times \mathbb{Z}$

$$f \mapsto (v_r(f), -\partial_l v_r(f)),$$
$$f \mapsto (v_r(f), \partial_r v_r(f)),$$

are specializations of v_r .

2.4. Zeros of holomorphic functions. Recall Jensen's inequality/equality. For nonzero $f \in \mathcal{O}(\mathbb{C})$ such that $f(0) \neq 0$. Let R > 0 such that f has no zero on $\{|z| = R\}$. Let a_1, \ldots, a_n be zeros of f in $\{|z| < R\}$. Then

$$\ln|f(0)| = \frac{1}{2\pi} \int_0^{2\pi} \ln|f(Re^{i\theta})| d\theta - n \ln R + \sum_{i=1}^n \ln|a_i|$$

and

$$\ln|f(0)| \le M(R) - n \ln R + \sum_{i=1}^{n} \ln|a_i|,$$

where M(R) is the maximal modulus on $\{|z| = R\}$.

In the non-zrchimedead setting, there is an equality. Assume $E = \mathbb{F}_q[[\pi]]$. For nonzero $f = \sum_{n\geq 0} x_n \pi^n \in \mathcal{O}(\mathbb{D}_F), f(0) = x_0 \neq 0$. Assume it has roots $(a_i)_{i\geq 1}$ with $v(a_1) \ge v(a_2) \ge \dots$ Then the slopes of Newt(f) are valuations of roots of f,

$$v(f(0)) = v_r(f) - nr + \sum_{i=1}^n v(a_i).$$

We want to do the same for $E = \mathbb{Q}_p$. We need to define zeros of f in this setting. For $E = \mathbb{F}_q((\pi))$,

$$Y = \mathbb{D}_F^* = \{ 0 < |\pi| < 1 \}$$

and

$$|Y|^{cl} = \{z \in \bar{F} \mid 0 < |z| < 1\} / Gal(\bar{F}/F)$$

= { $P \in F[\pi]$ | irreducible with all roots such that 0 < |z| < 1} / F^{\times}

 $= \{ P \in \mathcal{O}_F[\pi] \mid \text{unitary irreducible such that } 0 < |P(0)| < 1 \}.$

Definition 2.17. $f = \sum_{n>0} x_n \pi^n \in \mathbb{A}$ is (distinguished) primitive of degree d > 0if $x_0 \neq 0, x_0, \ldots, x_{d-1} \in \mathfrak{m}_F, x_d \in \mathcal{O}_F^{\times}$.

By Weierstrass fatorization, f = uP uniquely where $u \in \mathcal{O}_F[[\pi]]^{\times}$ and $P \in \mathcal{O}_F[\pi]$ is unitary with degree d. Thus

 $|Y|^{cl} = \{\text{primitive irreducible elements}\} / \mathcal{O}_F[[\pi]]^{\times}.$

Assume E/\mathbb{Q}_p .

Definition 2.18. $f = \sum_{n>0} [x_n] \pi^n \in \mathbb{A}$ is primitive of degree d if $x_0 \neq 0, x_0, \ldots, x_{d-1} \in \mathbb{A}$ $\mathfrak{m}_F, x_d \in \mathcal{O}_F^{\times}.$

It's equivalent to say, $f \mod \pi \neq 0$ in \mathcal{O}_F and $f \mod W_{\mathcal{O}_E}(\mathcal{O}_F) \neq 0$ in $W_{\mathcal{O}_E}(k_F)^d$. The degree of f is $v_{\pi}(f \mod W_{\mathcal{O}_E}(\mathcal{O}_F))$. Thus $\deg(fg) = \deg f + \deg g$.

Definition 2.19.

 $|Y|^{cl} = \{\text{irreducible primitive}\} / \mathbb{A}^{\times}.$

We will show that this is the set of the classical points of Y.

2.5. Perfectoid fields and tilting.

Definition 2.20. A complete field K with respect to a norm $|\cdot|: K \to \mathbb{R}_{\geq 0}$ is called a perfect oid field, if there is an element $\varpi \in K$ such that $|p| \leq |\varpi| < 1$ such that Frob : $\mathcal{O}_K/\varpi \to \mathcal{O}_K/\varpi$ is surjective.

For example, $\widehat{\mathbb{Q}(\zeta_{p^{\infty}})}(p>2), \mathbb{Q}_p(p^{1/p^{\infty}})$. An algebraic closed complete valued field is perfected. In char p case, K is perfected if and only if it is perfect.

Let K be a perfectoid field. Define the *tilting*

$$K^{\flat} = \lim_{x \mapsto x^p} K = \left\{ (x^{(n)})_{n \ge 0} \in K^{\mathbb{N}} \mid (x^{(n+1)})^p = x^{(n)} \right\},$$

with

$$(xy)^{(n)} = x^{(n)}y^{(n)}, \quad (x+y)^{(n)} = \lim_{k \to +\infty} (x^{(n+k)} + y^{(n+k)})^{p^k}.$$

Define

$$x^{\#} := x^{(0)}$$

and

$$|\cdot|: K^{\flat} \longrightarrow \mathbb{R}_{\geq 0}$$
$$x \longmapsto |x^{\#}|.$$

Then K^{\flat} is also perfect oid. Moreover, there is an isomorphism

$$\mathcal{O}_{K^{\flat}} \xrightarrow{\sim} \varprojlim_{x \mapsto x^{p}} \mathcal{O}_{K}/p$$
$$x \mapsto (x^{(n)} \mod p)_{n \ge 0}$$
$$\lim_{k \to +\infty} (\hat{y}_{n+k})^{p^{k}} \longleftrightarrow (y_{n})_{n \ge 0}.$$

Example 2.21. If K is of characteristic p, then $K^{\flat} = K$.

Example 2.22. If $K = \widehat{\mathbb{Q}_p(\zeta_{p^{\infty}})}, \epsilon = (\zeta_{p^n})_{n \ge 0} \in K^{\flat}$ and $\pi_{\epsilon} = \epsilon - 1 \in K^{\flat}$, then $K^{\flat} = \mathbb{F}_p((\pi_{\epsilon}^{1/p^{\infty}}))$. In fact, $\mathbb{Z}_p(\zeta_{p^{\infty}})/p \xrightarrow{\sim} \mathbb{F}_p(\pi_{\epsilon}^{1/p^{\infty}})/\pi_{\epsilon}$. If $K = \widehat{\mathbb{Q}_p(p^{1/p^{\infty}})}, \pi = (p^{1/p^n})_{n \ge 0} \in K^{\flat}$, then $K^{\flat} = \mathbb{F}_p((\pi^{1/p^{\infty}}))$. In fact, $\mathbb{Z}_p(p^{1/p^{\infty}})/p \xrightarrow{\sim} \mathbb{F}_p(\pi^{1/p^{\infty}})/\pi$.

Remark 2.23. In fact, Fontaine gave the isomorphism

$$R^{\flat} = \lim_{x \mapsto x^p} R/pR \xrightarrow{\sim} \left\{ (x^{(n)})_{n \ge 0} \in R^{\mathbb{N}} \mid (x^{(n+1)})^p = x^{(n)} \right\}$$

for any separated complete p-adic ring R.

Theorem 2.24. Let K be a perfectoid field. Then

- (1) If L/K is finite, then L is perfected and $[L^{\flat}: K^{\flat}] = [L:K]$.
- (2) $\mathcal{O}_L/\mathcal{O}_K$ is almost étale, i.e., if $n = [L:K], \forall 0 < \epsilon < 1, \exists e_1, \ldots, e_n \in \mathcal{O}_L$ such that

$$\epsilon \leq |\operatorname{disc}(\operatorname{Tr}_{L/K}(e_i e_j))_{1 \leq i, j, \leq n}| \leq 1.$$

 (3) (·)^b induces an equivalence between the set of finite étale K-algebras and the set of finite étale K^b-algebras.

Corollary 2.25. (1) K is algebraically closed if and only if K^{\flat} is.

(2) $\operatorname{Gal}(\overline{K}/K) \xrightarrow{\sim} \operatorname{Gal}(\overline{K^{\flat}}/K^{\flat})$, where $\overline{K^{\flat}}$ is the union of all L^{\flat} where L/K is finite.

Proposition 2.26. The functors

$$\{p\text{-adic rings}\} \xrightarrow[W(\cdot)]{(\cdot)^{\flat}} \{perfect \mathbb{F}_{p}\text{-algebras}\}$$

are adjoint, i.e.,

$$\operatorname{Hom}(W(A), B) = \operatorname{Hom}(A, B^{\flat}).$$

The adjuncation morphisms are

$$\begin{aligned} R &\xrightarrow{\sim} W(R^{\flat}) \\ x &\mapsto [x^{1/p^n}], \\ \theta &: W(R^{\flat}) \xrightarrow{\sim} R \\ \sum [x_n] p^n &\mapsto \sum x_n^{\#} p^n \end{aligned}$$

Remark 2.27. If R is a p-adic ring such that the Frobenius on R/pR is surjective, then $\theta \mod p$ is $R^{\flat} \to R/pR$. Thus θ is surjective by Nakayama lemma and R is a quotient of $W(R^{\flat})$.

2.6. Classical points.

Theorem 2.28. Let ξ be an irreducible primitive element of degree d and $\theta : \mathbb{A} \twoheadrightarrow \mathbb{A}/\xi = \mathcal{O}_K, K = \mathcal{O}_K[1/p].$

- (1) K/E is a perfectoid field with $|\theta([x])| = |x|$.
- (2) The morphism

$$\mathcal{O}_F \longrightarrow \mathcal{O}_K^\flat$$
$$x \longmapsto \theta([x^{p^{-n}}])_{n \ge 0}$$

induces K^{\flat}/F of degree d. In particular, $K^{\flat} = F$ if d = 1. (3) For d = 1, this induces

$$\begin{split} |Y|^{\mathrm{cl,deg}=1} &= \mathrm{Prim}^{\mathrm{deg}=1}/\mathbb{A}^{\times} \xrightarrow{\sim} \left\{ K/E \ \text{perfectoid} \ , K^{\flat} = F \right\} / \sim \\ &\quad (\xi) \mapsto (\mathbb{A}/\xi)[1/p] \\ &\quad \mathrm{ker} \ \theta \leftrightarrow K/E. \end{split}$$

Thus any ξ defines a valuation

$$\mathbb{A}\left[\frac{1}{\pi}, \frac{1}{[\varpi]}\right] \to \mathbb{A}\left[\frac{1}{\pi}, \frac{1}{[\varpi]}\right] / \xi \stackrel{|\cdot|}{\longrightarrow} \mathbb{R}_{\geq 0},$$

and

$$Y|^{\rm cl} = \{V(\xi) \mid \xi \in \mathbb{A} \text{ irreducible primitive } \} \subset |Y|.$$

We see that for $y \in |Y|^{\text{cl}}, k(y)/E$ is perfected and $[k(y)^{\flat}:F] < +\infty$.

Theorem 2.29. Assume that F is algebraically closed.

- (1) $\forall y \in |Y|^{\text{cl}}, k(y)$ is algebraically closed.
- (2) $\forall \xi, \deg(\xi) = 1.$
- (3) any primitive element ξ can be written as

$$\xi = u(\pi - [a_1]) \cdots (\pi - [a_d])$$

where $u \in \mathbb{A}^{\times}$.

For $y = V(\xi) \in |Y|^{\text{cl}}, \xi = \sum [x_n]\pi^n$ is primitive of degree d, set $|\xi| = |x_0|^{1/d} = |\pi(y)|.$

This defines the radius

$$|\cdot|: |Y|^{cl} \to (0,1).$$

Definition 2.30. For $y = V(\xi) \in |Y|^{\text{cl}}$,

$$B_{\mathrm{dR},y}^+ = \xi$$
-adic completion of $\mathbb{A}\left[\frac{1}{\pi}, \frac{1}{[\varpi]}\right] = \widehat{\mathcal{O}_{Y,y}}.$

It is a discrete valuation ring with uniformizer ξ and residue field k(y).

2.7. Localization of zeros.

Theorem 2.31. For nonzero $f \in B$,

$$\left\{-\log_{q}|y|\mid y\in |Y|^{\mathrm{cl}}, f(y)=0\right\}$$

coincides the slopes of Newt(f).

Definition 2.32. For any interval $I \subset (0, 1)$,

$$Y_I|^{cl} = \{ y \in |Y|^{cl} \mid |y| \in I \}.$$

Theorem 2.33. For any compact subset $I \subset (0,1)$, B_I is a PID with $\text{Spm}B_I = |Y_I|^{\text{cl}}$. In fact, $\text{Spm}B = \{(\xi) \mid |\xi| \in I\}$.

Proposition 2.34.

$$B_I^{\times} = \{ f \in B_I \setminus \{0\} \mid \operatorname{Newt}(f) = \emptyset \}.$$

Define the Robba ring the local ring of \mathcal{Y} at origin,

$$\mathcal{R} = \varprojlim_{\rho \to 0^+} B_{(0,\rho]}.$$

This is a Bezout ring.

Define

$$\operatorname{Div}^+(Y_I) = \{ D = \sum_{y \in |Y_I|^{cl}} m_y[y] \mid \operatorname{supp}(D) \text{ is locally finite }, m_y \in \mathbb{N} \},\$$

and

div :
$$(B_I \setminus \{0\})/B_I^{\times} \longrightarrow \operatorname{Div}^+(Y_I)$$

 $f \longmapsto \sum \operatorname{ord}_y(f)[y].$

Remark 2.35. If $E = \mathbb{F}_q((\pi)), I = (0, 1)$, the div map is a bijection if and only if F is spherically complete (Larzard).

For any $\rho \in (0, 1)$,

$$\operatorname{div}: B_{(0,\rho]} \setminus \{0\} / B_{(0,\rho]}^{\times} \xrightarrow{\sim} \operatorname{Div}^+(Y_{(0,\rho]}).$$

In fact, for $D = \sum_{n>0} [y_n]$ with $|y_n| \to 0$, write $y_n = V(\xi_n)$, the series

$$f = \prod_{n \ge 0} \xi_n \pi^{-\deg\xi}$$

converges, where $\xi_n \equiv \pi^{\deg \xi} \mod W_{\mathcal{O}_E}(\mathcal{O}_F)$.

2.8. Parametrization of classical points. Assume F is algebraically closed. If $E = \mathbb{F}_q((\pi))$, then $|Y|^{cl} = |D_F^*|^{cl} = \mathfrak{m}_F \setminus \{0\}$. Thus

$$D^*(F) = \mathfrak{m}_F \setminus \{0\} \xrightarrow{\sim} |Y|^{\mathrm{cl}}$$
$$a \longmapsto V(\pi - a)$$

If E/\mathbb{Q}_p , $a \in \mathfrak{m}_F \setminus \{0\}$, $y = V(\pi - [a])$, $D^*(F) = \mathfrak{m}_F \setminus \{0\} \longrightarrow |Y|^{\mathrm{cl}}$ $a \longmapsto V(\pi - a)$.

But it's hard to describe fibers.

For $y \in |Y|^{cl}, C_y = k(y)/E$ is algebraically closed. Choose $\underline{\pi} \in C_y^{\flat}$ such that $\underline{\pi}^{\sharp} = \pi$. Then $y = V(\pi - [\underline{\pi}])$.

Consider the case $E = \mathbb{Q}_p$. It's same for general E by using Lubin-Tate groups. Then

$$\mathbb{G}_m(\mathcal{O}_F) = (1 + \mathfrak{m}_F, \times)$$

is a Banach space as

$$a.\epsilon = \sum_{k \ge 0} {a \choose k} (\epsilon - 1)^k$$
$$p.\epsilon = \epsilon^p$$

and the fact that F is perfect.

Definition 2.36. For any $1 \neq \epsilon \in 1 + \mathfrak{m}_F$,

$$u_{\epsilon} := \frac{[\epsilon] - 1}{[\epsilon^{1/p}] - 1} = 1 + [\epsilon^{1/p}] + \dots + [\epsilon^{\frac{p-1}{p}}] \in \mathbb{A}.$$

Lemma 2.37. u_{ϵ} is primitive of degree 1.

Indeed,

$$u_{\epsilon} \mod p = 1 + \epsilon^{1/p} + \dots + \epsilon^{(p-1)/p} = \frac{\epsilon - 1}{\epsilon^{1/p} - 1} \in \mathcal{O}_F$$

is nonzero,

$$u_{\epsilon} \operatorname{mod} W(\mathfrak{m}_F) \equiv 1 + [1] + \dots + [1] = p \in W(k_F).$$

 Set

$$C_{\epsilon} = B/u_{\epsilon} = k(y)$$

where $y = V(\epsilon)$. Then $\epsilon = (\epsilon^{(n)}) \in F = C_{\epsilon}^{\flat}$, where $\epsilon^{(n)} = \theta_{\epsilon}([\epsilon^{1/p^n}])$. Then

$$1 + \epsilon^{(1)} + \dots + (\epsilon^{(1)})^{p-1} = \theta_{\epsilon} (1 + [\epsilon^{1/p}] + \dots + [\epsilon^{(p-1)/p}]) = \theta_{\epsilon} (u_{\epsilon}) = 0,$$

thus $\epsilon^{(1)} \in \mu_p(C_{\epsilon})$. Moreover

$$\mathcal{O}_{C_{\epsilon}}/p\mathcal{O}_{C_{\epsilon}} = \mathbb{A}/(p, u_{\epsilon}) = \mathcal{O}_{F}/\bar{u}_{\epsilon},$$

where

$$\bar{u}_{\epsilon} = \frac{\epsilon - 1}{\epsilon^{1/p} - 1} = (\epsilon - 1)^{\frac{p-1}{p}}.$$

Since $\epsilon^{(1)} - 1 \equiv \epsilon^{1/p} - 1 \mod p$, $\epsilon^{1/p} - 1 \notin \mathcal{O}_F u_{\epsilon}$, $\epsilon^{(1)} - 1 \neq 0 \mod p$ in C_{ϵ} . Hence $\epsilon^{(1)} \in \mu_p(C_{\epsilon})$ is primitive and $\underline{\epsilon}$ is a generator of $\mathbb{Z}_p(1)(C_{\epsilon}) = \left\{ x \in C_{\epsilon}^{\flat} \mid x^{\sharp} = 1 \right\}$.

Proposition 2.38.

$$((1+\mathfrak{m}_F)\backslash\{1\})/\mathbb{Z}_p^{\times} \xrightarrow{\sim} |Y|^{\mathrm{cl}}$$
$$\epsilon \longmapsto V(u_{\epsilon}).$$

The inverse is given by $y \in |Y|^{\text{cl}}, C_y = k(y)/E$. Choose ϵ a basis of $\mathbb{Z}_p(1)(C_y) \hookrightarrow (C_y^{\flat})^{\times} = F^{\times}$. Then $\epsilon \in (1 + \mathfrak{m}_F) \setminus \{1\}, y = V(u_{\epsilon})$.

Remark 2.39. Let

$$Y^{\diamond} = \operatorname{Spa} F \times_{\operatorname{Spa} \mathbb{F}_p} (\operatorname{Spa} \mathbb{Q}_p)^{\diamond}) = \operatorname{Spa} F \times \operatorname{Spa} \mathbb{Q}_p^{\operatorname{cyc},\flat} / \mathbb{Z}_p^{\times} = \mathbb{D}_F^{*,1/p^{\infty}} / \mathbb{Z}_p^{\times}$$

where $\mathbb{Z}_p^{\times} = \operatorname{Gal}(\mathbb{Q}_p^{\operatorname{cyc}}/\mathbb{Q}_p), \ \mathbb{Q}_p^{\operatorname{cyc},\flat} = \mathbb{F}_p((T^{1/p^{\infty}}))$. The action of \mathbb{Z}_p^{\times} is given by $a.T = \sum_{k\geq 0} {a \choose k} (T-1)^k$. Then $|Y| = |Y^{\diamond}| = |\mathbb{D}_F^*|/\mathbb{Z}_p^{\times}$.

$$Y_{\hat{F}}|^{\mathrm{cl},G_F-\mathrm{finite}} \twoheadrightarrow |Y_F|^{\mathrm{c}}$$

and $|Y_F|^{\mathrm{cl}} = |Y_{\hat{F}}|^{\mathrm{cl},G_F\text{-finite}}/G_F = ((1 + \mathfrak{m}_{\hat{F}}) \setminus \{1\})/\mathbb{Z}_p^{\times})^{G_F\text{-finite}}/G_F.$

3. The curve \boldsymbol{X}

The curve Y is Stein, it's completely determined by the E-Frechét algebra $\mathcal{O}(Y)$. It's *preperfectoid*, i.e., $Y \widehat{\otimes}_E K$ is perfected for a perfected field K/E. The Frobenius φ acts on \mathbb{A} by

$$\sum [x_n]\pi^n \mapsto \sum [x_n^q]\pi^n.$$

This induces the action of φ on $\mathcal{O}(Y)$ and Y with $|\varphi(y)| = |y|^{1/q}$.

Theorem 3.1. (1) $Y\langle \frac{\pi^a}{[\varpi]^b}, \frac{[\varpi]^c}{\pi^d} \rangle = \operatorname{Spa}(R, R^\circ)$ and R is an E-Banach algebra and a PID.

(2) R is strongly neotherian.

Thus Y is a one-dimensional regular adic space over E. Define

$$X^{\mathrm{ad}} := Y/\varphi^{\mathbb{Z}},$$

this is a quasi-compact adic space over E, neotherian regular of dimension one. For $0 < \rho_1 < \rho_2 < \rho_1^{1/q} < 1$,

$$X^{\mathrm{ad}} = Y_{[\rho_1, \rho_2]} \cup Y_{[\rho_2, \rho_1^{1/q}]}.$$

Remark 3.2. φ is the arithmetic Frobenius. For X/\mathbb{F}_q , there are geometric Frobenius $\operatorname{Frob}_X \times \operatorname{Id}$, arithmetic Frobenius $\operatorname{Id} \times \operatorname{Frob}_q$ and absolute $\operatorname{Frobenius} \operatorname{Frob}_X \times \operatorname{Frob}_q$ on $X_{\overline{\mathbb{F}}_q}$.

The line bundles on X^{ad} are $\varphi^{\mathbb{Z}}$ -equivariant line bundles over Y, i.e., projective φ -modules over B of rank 1, or free \mathcal{R} -modules of rank 1. Thus $\text{Pic}(X^{\text{ad}}) = \mathbb{Z}$, where n corresponds $(B \cdot e, \varphi)$ with $\varphi(e) = \pi^{-n}e$.

Definition 3.3. Define $\mathcal{O}(d)$ corresponds $(B, \pi^{-d}\varphi)$.

For a proper smooth algebraic curve X over \mathbb{C} , the analytic part X^{an} is a compact Riemann surface. Conversely, given a compact Riemann surface Z, there is an ample line bundle \mathcal{L} over Z, e.g., $\mathcal{O}(z)$ for $z \in Z$, Then

$$\operatorname{Proj}\left(\bigoplus_{d>0} \mathrm{H}^{0}(Z, \mathcal{L}^{\otimes d})\right)$$

is a proper smooth algebraic curve.

We claim that $\mathcal{O}(1)$ is ample. Denote by

$$P_d = \mathrm{H}^0(X^{\mathrm{ad}}, \mathcal{O}(d)) = B^{\varphi = \pi^d}$$

and

$$P = \bigoplus_{d \ge 0} P_d$$

We take

$$X = \operatorname{Proj} P$$

Theorem 3.4. (1) X is a Dedekind scheme.

(2) There is a natural morphism of ringed spaces $X^{\mathrm{ad}} \to X$ inducing $|X^{\mathrm{ad}}|^{\mathrm{cl}} := |Y|^{\mathrm{cl}}/\varphi^{\mathbb{Z}} \xrightarrow{\sim} |X| = \{ closed points \} \ such that$

$$\widehat{\mathcal{O}}_{X,x} \xrightarrow{\sim} \widehat{\mathcal{O}}_{Y,y} = B^+_{\mathrm{dR}}(k(y))$$

if $y \mapsto x$. In particular, for any $x \in |X|$, k(x)/E is perfectoid.

(3) X is complete, i.e., for any $x \in |X|$, $\deg(x) := [k(x)^{\flat} : F]$, then $\deg(\operatorname{div}(f)) = 0$ for any $f \in E(X)^{\times}$. This implies we may define degree of vector bundles.

(4) There is an isomorphism

$$|X|^{\deg=1} \longrightarrow \{untilts \text{ of } F\} / \text{Frob}^{\mathbb{Z}}$$
$$x \longmapsto k(x).$$

(5) If F is ac, $\infty \in |X|$, there is $t \in H^0(X, \mathcal{O}(1)) \setminus \{0\}$ such that $V(t) = \{\infty\}$ and $X \setminus \{\infty\} = \operatorname{Spec} B_e$, where $B_e := B[1/t]^{\varphi=1}$.

 B_e is a PID and $(B_e, -\operatorname{ord}_{\infty})$ is non-Euclidean but almost Euclidean, i.e., for any x, y, there is x = ay + b with $\operatorname{deg}(b) \leq \operatorname{deg}(y)$. That's because $\operatorname{H}^1(X, \mathcal{O}_X(-1)) \neq 0$ but $\operatorname{H}^1(X, \mathcal{O}_X) = 0$.

We are going to prove that X is a curve. We assume that F is algebraically closed. The case of general perfectoid F is treated by Galois descent from \hat{F} to F.

3.1. The fundamental exact sequence.

Proposition 3.5. *P* is a graded fractional ring with irreducible elements of degree 1.

For any $0 \neq t \in P_1$, $P[1/t]_0$ is fractional with irreducible elements $\{t'/t \mid t' \in P_1 - Et\}$.

Proposition 3.6. Let $t_1, \ldots, t_d \in P_1 \setminus \{0\}$ associate $y_1, \ldots, y_d \in |Y|^{cl}$, i.e., $\operatorname{div}(t_i) = \sum_{n \in \mathbb{Z}} [\varphi^n(y_i)]$ on Y. Let $y_i = V(a_i)$, where a_i is primitive of degree 1. Then the sequence

$$0 \to E \cdot \prod_{i=1}^{d} t_i \to B^{\varphi = \pi^d} \to B/a_1 \cdots a_d B \to 0$$

 $is \ exact.$

For example, if $t \in P_1 \setminus \{0\}$,

$$0 \to E \cdot t^d \to B^{\varphi = \pi^d} \to B^+_{\mathrm{dR},y} / \mathrm{Fil}^d B^+_{\mathrm{dR},y} \to 0$$

for $y \in |Y|^{cl}, t(y) = 0.$

Proof. Exactness in the middle. Suppose $f \in B^{\varphi = \pi^d} \cap a_1 \dots a_d B$ is nonzero, then

$$\operatorname{div}(f) \ge \sum_{i=1}^{d} [y_i]$$

in $\operatorname{Div}^+(X^{\operatorname{ad}})$. Then

$$\operatorname{div}(f) \ge \sum_{n \in \mathbb{Z}} \sum_{i=1}^{d} [\varphi^n(y_i)] = \operatorname{div}(\prod_{i=1}^{d} t_i)$$

and then $f = x \prod_{i=1}^{d} t_i$ for some $x \in B^{\varphi=1} = E$.

Surjectivity. We only need to prove d = 1 case. For any $x \in C$, $p^n x$ lies in the convergence domain of exp for $n \gg 0$. Since C is algebraically closed, there is $z \in C$ such that $\exp(p^n x) = z^{p^n}$, thus $\log z = x$ and $\log : 1 + \mathfrak{m}_C \to C$ is surjective.

Assume $E = \mathbb{Q}_p$. Let a be a primitive element of degree 1, y = V(a) and $C = C_y = B/aB$. Then $C^{\flat} = F$. For any $\varepsilon \in 1 + \mathfrak{m}_F$, $\log([\varepsilon]) \in B^{\varphi=p}$ and $\theta(\log([\varepsilon])) = \log(\theta([\varepsilon])) = \log\varepsilon^{\sharp}, \varepsilon^{\sharp} \in 1 + \mathfrak{m}_C$. Take ε such that $\varepsilon^{\sharp} = z$, then $\theta(\log([\varepsilon])) = x$. It's same for general E by using $\log_{\mathcal{LT}}$ for Lubin-Tate group with respect to (q, π) .

We are going to use the fundamental exact sequence to prove that X is a curve. Reciprocally, once the curve is constructed, we can find back the fundamental exact sequence by applying $\mathrm{H}^{0}(X, -)$ on

$$0 \longrightarrow \mathcal{O}_X \xrightarrow{\quad \times \prod_{i=1}^d t_i} \mathcal{O}_X(d) \longrightarrow \mathcal{F} \longrightarrow 0$$

and $\mathrm{H}^1(X, \mathcal{O}_X) = 0.$

Corollary 3.7. For any $t \in P_1 \setminus \{0\}$, $t(y) = 0, y \in |Y|^{cl}$, $C = C_y$,

$$P/tP \longrightarrow \{f \in C[T] \mid f(0) \in E\}$$

$$x \mod tP_{i-1} \longmapsto \theta_u(x)T^i$$

is an isomorphism between graded rings, where

$$P/tP = E \oplus \bigoplus_{i \ge 1} P_i/tP_{i-1}.$$

3.2. Vector bundles. Let X be an integral Dedekind scheme with generic point η . Let $\infty \in |X|$ be a closed point. Let $K = \mathcal{O}_{X,\eta}$ be the field of rational functions on X. We suppose that $X - \{\infty\}$ is affine, i.e., $X - \{\infty\} = \operatorname{Spec} A$ where $A = RH^0(X \{\infty\}, \mathcal{O}_X)$. Let t be a uniformizer in $\mathcal{O}_{X,\infty}$.

Denote by Bun_X the category of vector bundles on X, i.e., locally free \mathcal{O}_X -modules of finite rank.

Denote by C the category of triples (M, W, u), where M is a projective A-module of finite type, W is a free $\widehat{\mathcal{O}}_{X,\infty}$ -module of finite type and

$$u: M \otimes_A \widehat{\mathcal{O}}_{X,\infty}[1/t] \xrightarrow{\sim} W[1/t]$$

is an isomorphism.

Theorem 3.8. There is an equivalence of categories

$$\mathsf{Bun}_{X} \xrightarrow{\sim} \mathsf{C}$$
$$\mathcal{E} \longmapsto (\Gamma(X - \{\infty\}, \mathcal{E}), \widehat{\mathcal{E}}_{\infty}, \operatorname{can}).$$

Here can is induced by $\Gamma(X - \{\infty\}, \mathcal{E}) \hookrightarrow \mathcal{E}_{\eta} = \mathcal{E}_{\infty}[1/t].$

Moreover, if \mathcal{E} corresponds to (M, W, u), then $\Gamma(X, -)$ on \mathcal{E} has a resolution

$$\Gamma(X,\mathcal{E}) \to M \oplus W \xrightarrow{\partial} W[1/t],$$

where $\partial(m, w) = u(m) - w$. Thus

$$\mathrm{H}^{0}(X,\mathcal{E}) = u(M) \cap W, \qquad \mathrm{H}^{1}(X,\mathcal{E}) = \frac{W[1/t]}{W + u(M)}$$

Suppose X is complete. Then there is a map deg : $|X| \to \mathbb{N}_+$ such that $\deg(\operatorname{div}(f)) = 0$. Assume $\deg \infty = 1$. Then

$$H^{0}(X, \mathcal{O}_{X}) = \{ f \in K^{\times} \mid \operatorname{div}(f) \ge 0 \} \cup \{ 0 \} = \{ f \in K^{\times} \mid \operatorname{div}(f) = 0 \} \cup \{ 0 \}$$

is a field. Denote by $E = \mathrm{H}^0(X, \mathcal{O}_X) \subset K$.

Denote by

$$\deg = -\operatorname{ord}_{\infty} : A \to \mathbb{N} \cup \{\infty\}.$$

Then $E = A^{\deg \leq 0} = A^{\deg = 0}$. Note that $A^{\deg \leq d} = \operatorname{H}^{0}(X, \mathcal{O}_{X}(d[\infty]))$ and the sheaf $\mathcal{O}_{X}(d[\infty])$ corresponds $(A, t^{-d}\widehat{\mathcal{O}}_{X,\infty}, \operatorname{can}),$

$$\mathrm{H}^{1}(X, \mathcal{O}_{X}(d[\infty])) = \frac{K}{t^{-d}\mathcal{O}_{X,\infty} + A}.$$

In particular,

$$\mathrm{H}^{1}(X, \mathcal{O}_{X}(-\infty)) = \frac{K}{t\mathcal{O}_{X,\infty} + A}$$

is zero iff A is Euclidean, i.e., for any $x, y \in A$ with $y \neq 0$, there is $a \in A$ such that $\deg(x/y-a) < 0$. $\mathrm{H}^{1}(X, \mathcal{O}_{X}) = 0$ iff A is almost Euclidean, i.e., $\deg(x/y-a) \leq 0$.

Now for our X, $\mathrm{H}^{1}(X, \mathcal{O}_{X}) = 0$ but $\mathrm{H}^{1}(X, \mathcal{O}_{X}(-1)) \neq 0$, since B_{e} is almost Euclidean but not Euclidean.

3.3. Harder-Narasimhan filtrations. See Yves André, *Slope filtrations* https://arxiv.org/abs/0812.3921.

Consider

- an exact category C,
- an abelian categoryA,
- an exact faithful functor $\mathcal{F} : \mathsf{C} \to \mathsf{A}$, called *generic fiber functor*, such that for any $X \in \mathsf{C}$, \mathcal{F} induces an equivalence between strict sub-objects of X and sub-objects of $\mathcal{F}(X)$, the inverse functor is called schematical closure.

- an additive map $\mathrm{rk} : \mathrm{Obj}(\mathsf{C}) \to \mathbb{N}$, i.e., it factors through $\mathrm{K}_0(\mathsf{C}) \to \mathbb{Z}$, such that $\mathrm{rk}(X) = 0$ iff X = 0,
- an additive map deg : $ObjC \to \mathbb{R}$ such that for $u : X \to Y$, if $\mathcal{F}(u)$ is an isomorphism, then deg $X \leq \deg Y$ with equality iff u is an isomorphism.

Example 3.9. Let X be a complete integral Dedekind scheme. Then $k(X) = \mathcal{O}_{X,\eta}$ is equipped with deg : $|X| \to \mathbb{N}_{\geq 1}$ such that for any $f \in k(X)^{\times}$, deg(div(f)) = 0. Take $\mathsf{C} = \mathsf{Bun}_X, \mathsf{A} = \mathsf{Vect}_{k(X)}, \ \mathcal{F}(\mathcal{E}) = \mathcal{E}_{\eta}$. Then the strict sub-objects of \mathcal{E} are locally direct factors $\mathcal{F} \subset \mathcal{E}$. For any $V \subset \mathcal{E}_{\eta}, \ \mathcal{E} \cap V$ is a strict sub-object of \mathcal{E} .

The degree map induces deg : $\operatorname{Pic}(X) \to \mathbb{Z}$ and then deg : $\operatorname{Bun}_X \to \mathbb{Z}$ via $\operatorname{deg}(\mathcal{E}) := \operatorname{deg}(\operatorname{det} \mathcal{E})$. Then if $u : \mathcal{E} \to \mathcal{E}'$ induces an isomorphism $\mathcal{E}_\eta \xrightarrow{\sim} \mathcal{E}'_\eta$, then

$$0 \to \mathcal{E} \to \mathcal{E}' \to \mathcal{F} \to 0$$

with torsion \mathcal{F} , and $\deg \mathcal{E}' = \deg \mathcal{E} + \deg \mathcal{F}$. \mathcal{F} can be written as $\mathcal{F} = \oplus i_{x*}M_x$ where M_x is finite length $\mathcal{O}_{X,x}$ -module and

$$\deg \mathcal{F} = \sum \operatorname{length}_{\mathcal{O}_x}(M_x) \operatorname{deg}(x).$$

Example 3.10. If C = A is an abelian category, $\mathcal{F} = Id$, we require additive maps deg and rk, such that rk(X) = 0 iff X = 0.

Example 3.11. Let k be a field, $\mathsf{BT}_k \otimes \mathbb{Q}$ is the category of p-divisible groups over k up to isogeny. This is an abelian category. We take rk to be the height and deg the dimension of associated formal group. Then the Harder-Narasimhan filtration in this category is the slope filtration. For example,

$$0 \to H^{\circ} \to H \to H^{\text{\acute{e}t}} \to 0$$

is part of this filtration.

Example 3.12. Let L/K be an extension. Let C be the category of vector spaces V over K with a finitely decreasing fitration on V_L . The exactness should be strictly compatible with fluctuations. Define

$$\operatorname{rk} = \dim_{K} V$$
 $\operatorname{deg} = \sum i \cdot \operatorname{dim} \operatorname{gr}^{i} \operatorname{Fil} V_{L}.$

Define $\mathcal{F}: \mathsf{C} \to \mathsf{Vect}_K$ to be the forgetful functor. Then the deserved property follows from

$$\deg = N \dim V + \sum_{i < N} \dim \operatorname{Fil}^{i} V_{L}, \quad N \ll 0.$$

Example 3.13. Let k be a perfect field with characteristic p, σ the Frobenius on $K_0 = W(k)_{\mathbb{Q}}$. Let K/K_0 be a finite ramified extension. Denote by φ -ModFil_{K/K_0} the category of $(D, \varphi, \operatorname{Fil}D_K)$ where (D, φ) is an isocrystal. Denote by $\operatorname{rk} = \dim_{K_0} D$, deg = $t_H - t_N$. Then semi-stable slope 0 objects are weakly admissible filtered isocrystals.

Example 3.14. Let \mathcal{R} be a Bezout ring, $\mathcal{E} \subset \mathcal{R}$ a field with a nontrivial valuation $v : \mathcal{E} \to \mathbb{R} \cup \{-\infty\}$. Let σ be an endomorphism that stabilizes \mathcal{E} such that $v(\sigma(x)) = v(x)$. We assume that $\mathcal{E}^{\times} = \mathcal{R}^{\times}$ and for any nonzero $x \in \mathcal{R}$ such that $x^{\sigma-1} \in \mathcal{E}^{\times}$, $v(x^{\sigma-1}) \geq 0$. Denote by C the category of (M, φ) , where M is a free \mathcal{R} -module with finite rank, φ is a σ -semilinear endomorphism on M such that $\varphi \otimes \mathrm{Id} : M^{(\sigma)} \xrightarrow{\sim} M$. Denote $\mathcal{F}(M, \varphi) = (M \otimes_{\mathcal{R}} \mathrm{Frac} \mathcal{R}, \varphi \otimes \sigma)$, $\mathrm{rk} = \mathrm{rk}_{\mathcal{R}}(M)$, $\mathrm{deg} = -v(\mathrm{det}\,\varphi) = -v(a)$, where $\mathrm{det}(M, \varphi) = \mathcal{R}e, \varphi e = ae$.

Denote by

$$\mu := \frac{\deg}{\mathrm{rk}}.$$

From now on in this subsection, $X \subseteq Y$ means a strictly sub-object, thus

$$0 \to X \to Y \to Y/X \to 0$$

is exact.

Definition 3.15. $X \in \mathsf{C}$ is called *semi-stable* if for any nonzero strictly sub-object $C' \subset X$, $\mu(X') \leq \mu(X)$.

Remark 3.16. Any morphism in C has a kernel and coker. The kernel of $f : X \to Y$ is the schematical closure of ker($\mathcal{F}(f)$).

Theorem 3.17. For any nonzero $X \in C$, there is a unique filtration

$$0 = X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_n = X$$

such that X_i/X_{i-1} is semi-simple and

$$\mu(X_1/X_0) > \cdots > \mu(X_n/X_{n-1})$$

Define the Harder-Narasimhan polygon HN(X) to be the concave polygon defined on $[0, \mathrm{rk}X]$ with breaking points $(\mathrm{rk}X_i, \deg X_i)$, i.e., on $[\mathrm{rk}X_i, \mathrm{rk}X_{i+1}]$, it has slope $\mu(X_{i+1}/X_i)$.

Theorem 3.18. For any $Y \subseteq X$, $(\operatorname{rk} Y, \deg Y)$ is under $\operatorname{HN}(X)$. Thus $\operatorname{HN}(X)$ is the concave hull of $(\operatorname{rk} Y, \deg Y)$ for all $Y \subseteq X$.

Theorem 3.19. The subcategory C_{λ}^{ss} of slope λ semi-simple objects. is an abelian category, stable under extensions in C. Thus the Harder-Narasimhan filtrations give a dévissage of C in $(C_{\lambda}^{ss})_{\lambda \in \mathbb{R}}$.

Proof of existance. If

$$0 \to X' \to X \to X'' \to 0$$

is exact, then

$$\mu(X) = \frac{\operatorname{rk} X'}{\operatorname{rk} X} \mu(X') + \frac{\operatorname{rk} X''}{\operatorname{rk} X} \mu(X'') \in [\mu(X'), \mu(X'')]$$

Here [a, b] := [b, a] if a > b, i.e., the convex hull Conv(a, b). If

 $0 = X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_n = X$

is a Harder-Narasimhan filtration of X, then

$$\mu(X) \in \operatorname{Conv}(\mu(X_i/X_{i-1}))_{1 \le i \le n}.$$

Thus

$$\inf \{\mu(X_i/X_{i-1}) \le \mu(X) \le \sup \{\mu(X_i/X_{i-1})\} \}$$

For nonzero X in C, consider the condition

(*)
$$Y \subseteq X$$
 semi-stable and for any $Y' \subsetneq Y \subset X$, $\mu(Y') \le \mu(Y)$

i.e., Y is maximal semi-stable sub-object of X. This is equivalent to say, any nonzero $Y'' \subset X/Y, \mu(Y'') < \mu(Y)$. In fact, if $Y'' = Y'/Y, Y \subsetneq Y' \subset X, \ \mu(Y') \in (\mu(Y), \mu(Y''))$ and thus $\mu(Y'') < \mu(Y)$.

Lemma 3.20. At most one $Y \subseteq X$ satisfying (*).

Assume Y_1, Y_2 satisfy (*). Suppose $Y_1 \not\subseteq Y_2$, consider

 $Y_1/\operatorname{Ker} f \to \operatorname{Im} f$ is an isomorphism in generic fibers, thus $\mu(Y_1/\operatorname{Ker} f) \leq \mu(\operatorname{Im} f)$. But Y_1 is semi-stable, $\mu(\operatorname{Ker} f) \leq \mu(Y_1) \leq \mu(Y_1/\operatorname{Ker} f) \leq \mu(\operatorname{Im} f) < \mu(Y_2)$. By symmetric, $\mu(Y_2) < \mu(Y_1)$ if $Y_2 \not\subset Y_1$. Thus $Y_1 \subseteq Y_2$ or $Y_2 \subseteq Y_1$.

Lemma 3.21. $\mu_{\max}(X) := \sup \{ \mu(Y) \mid 0 \neq Y \subset X \} < +\infty.$

Take

$$0 = X_0 \subsetneq \cdots \subsetneq X_n = X$$

such that $0 = \mathcal{F}(X_0) \subsetneq \cdots \subsetneq \mathcal{F}(X_n) = \mathcal{F}(X)$ is a Jordan-Hölder filtration. For nonzero $Y \subseteq X$, take $0 = Y_0 \subseteq \cdots \subseteq Y_n = Y$ such that $\mathcal{F}(Y_i) = \mathcal{F}(Y) \cap \mathcal{F}(X_i)$. Consider $u_i : Y_i/Y_{i-1} \hookrightarrow X_i/X_{i-1}, \mathcal{F}(u_i) : \mathcal{F}(Y_i/Y_{i-1}) \hookrightarrow \mathcal{F}(X_i/X_{i-1})$. Since $\mathcal{F}(X_i/X_{i-1})$ is simple, $Y_i = Y_{i-1}$ or $\mathcal{F}(u_i)$ is an isomorphism, thus $\mu(Y_i/Y_{i-1}) \leq \mu(X_i/X_{i-1})$ and then $\mu(Y) \leq \sup \{\mu(Y_i/Y_{i-1})\} \leq \sup \{\mu(X_i/X_{i-1})\}$.

Lemma 3.22. $\mu_{\max}(X)$ is reached.

It's clear if deg : $\mathsf{C} \to \mathbb{Z}$.

Now we take Y such that $\mu(Y) = \mu_{\max}(X)$ with maximal rank, then Y satisfies (*).

Let's back to the proof. Set $X_1 \subset X$ satisfying (*) and $X_i/X_{i-1} \subset X/X_{i-1}$ satisfying (*) inductively. The existance then follows.

If we have such a filtration, then $X_1 \subset X$ satisfying (*). In fact, for $Y \subset X/X_1$, $0 = Y_1 \subset Y_2 \subset \cdots \subset Y_n = Y$ such that $v_i : Y_i/Y_{i-1} \hookrightarrow X_i/X_{i-1}$. Then $\mu(Y_i/Y_{i-1}) \leq \mu(\operatorname{Im} v_i) \leq \mu(X_i/X_{i-1})$ and $\mu(Y) \leq \sup \{\mu(Y_i/Y_{i-1})\} \leq \sup \{\mu(X_i/X_{i-1})\} = \mu(X_1/X_0)$. The uniqueness then follows by induction. \Box

4. Classification of vector bundles

Assume E/\mathbb{Q}_p , F/\mathbb{F}_q is algebraically closed. Let $X_E/\text{Spec}E$ be the Fontaine-Fargues curve.

Theorem 4.1 (GAGA, Kedlaya-Liu). There is an equivalence of categories

$$\operatorname{Coh}_X \xrightarrow{\sim} \operatorname{Coh}_{X^{\operatorname{an}}}.$$

4.1. Construction of some vector bundles. Recall $X_E = \operatorname{Proj}(P_{E,\pi})$. Denote by $\mathcal{O}_{X_E}(d)$ the module with respect to the graded $P_{E,\pi}$ -module $P_{E,\pi}[d]$. This is a line bundle on X_E .

Remark 4.2. X_E does not depend canonically on the choice of π , but $\mathcal{O}_{X_E}(1)$ does: another choice of uniformizing element leads to an isomorphic line bundle but the isomorphism is not canonical.

Since X is "complete", deg(div f) = 0, we have

$$\deg: \operatorname{Pic}(X_E) = \operatorname{Div}(X_E) / \operatorname{div}(E(X_E)^{\times}) \to \mathbb{Z}.$$

Define $\deg(\mathcal{E}) = \deg(\det \mathcal{E})$ for vector bundle \mathcal{E} . Take $\mu = \deg/\mathrm{rk}$, we get Harder-Narasimhan reduction theory.

Proposition 4.3. We have an isomorphism deg : $\operatorname{Pic}(X_E) \xrightarrow{\sim} \mathbb{Z}$, *i.e.* $\operatorname{Pic}(X_E) = \langle \mathcal{O}_{X_E}(1) \rangle$.

This is a consequence of $X_E - \{\infty\}$ is affine and the ring of global sections are PID.

For E'/E, $X'_E := X_E \otimes_E E'$. If E_h/E is unramified of degree h, then $\varphi_{E_h} = \varphi^h_E, W_{\mathcal{O}_{E_h}} = W_{\mathcal{O}_E}$. Replacing E by E_h does not change $Y_{E_h} = Y_E$, it changes the

Frobenius.

Then by GAGA, we get a $\mathbb{Z}/h\mathbb{Z}$ Galois cover

Thus

is a $\widehat{\mathbb{Z}}\text{-}\mathrm{pro}$ Galois cover.

We have $\pi_{E_h}^* \mathcal{O}_{X_E}(d) = \mathcal{O}_{X_{E_h}}(hd).$

Definition 4.4. For any $\lambda = d/h \in \mathbb{Q}$, (d, h) = 1, h > 0, define

$$\mathcal{O}_{X_E}(\lambda) = \pi_h * \mathcal{O}_{X_{E_h}}(d).$$

It's of rank h and degree d. It's semi-stable of slope λ since pushforwards of a semi-stable vector bundle by a finite étale Galois cover are still semi-stable.

We have

$$\mathcal{O}(\lambda) \otimes \mathcal{O}(\mu) = \bigoplus_{\text{finite}} \mathcal{O}(\lambda + \mu),$$
$$\mathcal{O}(\lambda)^{\vee} = \mathcal{O}(-\lambda).$$
$$\operatorname{Hom}(\mathcal{O}(\lambda), \mathcal{O}(\mu)) = \bigoplus_{\text{finite}} \operatorname{H}^{0}(X, \mathcal{O}(\mu - \lambda))$$

is zero if $\lambda > \mu$ since $\mathrm{H}^0(X_E, \mathcal{O}(\frac{d}{h})) = \mathrm{H}^0(X_{E_h}, \mathcal{O}_{X_{E_h}}(d)) = 0$ if d < 0.

$$\operatorname{Ext}^{1}(\mathcal{O}(\lambda), \mathcal{O}(\mu)) = \bigoplus_{\text{finite}} \operatorname{H}^{1}(X, \mathcal{O}(\mu - \lambda))$$

is zero if $\lambda \leq \mu$ since $\mathrm{H}^1(X_E, \mathcal{O}(\frac{d}{h})) = \mathrm{H}^1(X_{E_h}, \mathcal{O}_{X_{E_h}}(d)) = 0$ if $d \geq 0$.

Theorem 4.5. (1) Any slope λ semi-stable vector bundle is isomorphic to a direct sum of $\mathcal{O}_X(\lambda)$.

(2) The Harder-Narasimhan filtration of a vector bundle is split.

(3) There is a bijection between

$$\{\lambda_1 \geq \cdots \geq \lambda_n \mid \lambda_i \in \mathbb{Q}, n \in \mathbb{N}\}$$

and the isomorphic classes of vector bundles on X as

$$(\lambda_i) \longmapsto \left[\bigoplus_i \mathcal{O}(\lambda_i) \right].$$

Remark 4.6. (1)+(2) \iff (3). Moreover, (1) \Rightarrow (2) via the computation of Ext¹($\mathcal{O}(\lambda)$, $\mathcal{O}(\mu) = 0 \text{ if } \lambda \leq \mu.$

In particular, denote by Bun_X^0 the abelian category of slope 0 semi-stable vector bundles over X. Then we have an equivalence of categories

$$Vect_E \xrightarrow{\sim} Bun_X^{,0}$$
$$V \mapsto V \otimes_E \mathcal{O}_X$$
$$H^0(X, \mathcal{E}) \leftarrow \mathcal{E}.$$

That's to say, a vector bundle over X is trivial iff it's semo-stable of slope 0.

More generally, $\operatorname{End}(\mathcal{O}(\lambda)) = D_{\lambda}^{\operatorname{op}}$, where D_{λ} is the division algebra over E with invariant λ . We have an equivalence of categories

$$Vect_{D_{\lambda}} \xrightarrow{\sim} Bun_{X}^{,\lambda}$$
$$V \mapsto V \otimes_{D_{\lambda}} \mathcal{O}(\lambda)$$

4.2. From isocrystals to vector bundles. Denote by $\check{E} = \widehat{E^{ur}}$ endowed with Frobenius σ . Denote by φ -Mod_{\check{E}} the abelian category of isocrystals, which is semi-stable by Dieudonné-Mannin.

$$\varphi\operatorname{-Mod}_{\check{E}} = \bigoplus_{\lambda \in \mathbb{Q}} \varphi\operatorname{-Mod}_{\check{E}}^{\lambda}.$$

For any λ , there is a unique simple object $N_{\lambda} = \langle e, \varphi(e), \dots, \varphi^{h-1}(e) \rangle, \lambda = d/h$ with $\varpi^{h}(e) = \pi^{d} e$.

We have a \otimes -exact functor

$$\varphi\operatorname{-\mathsf{Mod}}_{\check{E}} \longrightarrow \mathsf{Bun}_X$$
$$(D,\varphi) \longmapsto \mathcal{E}(D,\varphi)$$

where $\mathcal{E}(D, \varphi)$ is the module associated to the graded *P*-module

$$\bigoplus_{d>0} (D\otimes_E B)^{\varphi\otimes\varphi=\pi^d}$$

Via GAGA, $\mathcal{E}(D, \varphi)^{\mathrm{ad}}$ is a vector bundle on $Y/\varphi^{\mathbb{Z}}$ corresponding to the φ -equivariant vector bundle $(D \otimes_{\check{E}} \mathcal{O}_Y, \varphi \otimes \varphi)$.

If (D, φ) is simple of slope λ , then $\mathcal{E}(D, \varphi) = \mathcal{O}_X(-\lambda)$. Thus via Dieudonné-Manin classification theorem, this functor is essentially surjective.

5. Periods of p-divisible groups

The main tool is the classification theorem. Take $E = \mathbb{Q}_p$ to simplify. Let C/\mathbb{Q}_p be an algebraically closed field with $C^{\flat} = F$. Thus there is $\infty \in |X|$ with $k(\infty) = C$.

Denote by $\mathsf{BT}_{\mathcal{O}_C}$ the category of Barsotti-Tate *p*-divisible groups over \mathcal{O}_C . We want to explain the functor

 $\mathsf{BT}_{\mathcal{O}_C} \longrightarrow \{ \text{Modifications of vector bundles} \}$

$$H \longmapsto [0 \to V_p(G) \otimes \mathcal{O}_X \to \mathcal{E}_H \to i_{\infty*} \mathrm{Lie}H[\frac{1}{p}] \to 0]$$

where $V_p(H) \otimes \mathcal{O}_X$ is a trivial vector bundle with fiber $V_p(H)$, $\mathcal{E}_H = \mathcal{E}(D, p^{-1}\varphi)$ is a covariant isocrystal of the reduction of H.

5.1. Periods in characteristic p. Let k/\mathbb{F}_p be a perfect field. A Dieudonné crystal is a free W(k)-module of finite rank with endomorphisms F, V, where F is σ -linear, V is σ^{-1} -linear, FV = VF = p. Then

$$\mathsf{BT}_k \xrightarrow{\sim} \{ \text{Dieudonné crystals} \}$$
$$H \mapsto \mathbb{D}(H).$$

5.2. The covectors. Denote by

$$W_n = \{ [x_0, \dots, x_{n-1}] \} = W/V^n W$$

the ring of trucated Witt vectors of length n. It's an affinte unipotent group scheme, isomorphic to \mathbb{A}_k^n . We have

$$W_n \xrightarrow{V} W_{n+1} \xrightarrow{V} W_{n+2} \xrightarrow{V} \cdots$$

where $V([x_0, \dots, x_{n-1}]) = [0, x_0, \dots, x_{n-1}].$

Denote by

$$CW^u := \lim_{n \ge 1} W_n = \{ [x_n]_{n \le 0} \mid x_n = 0 \text{ for } n \ll 0 \}.$$

the ring of unipotent Witt covectors. Here

$$[x_n] + [y_n] = [z_n]$$

with $x_n = P_k(x_{n-k}, \ldots, x_n, y_{n-k}, \ldots, y_n), k \gg 0$, P_k is the polynomial gives the addition of Witt vectors

$$\sum_{n\geq 0} V^n[x_n] + \sum_{n\geq 0} V^n[y_n] = \sum_{n\geq 0} V^n[P_n(x_0,\dots,x_n,y_0,\dots,y_n)].$$

The problem of this ring is $\operatorname{Hom}(\mu_p, \operatorname{CW}^u) = 0$ since μ_p is not unipotent. So we need Fontaine's Witt covectors. Let R be an \mathbb{F}_p -algebra,

 $CW(R) := \{ [x_n] \mid x_n \in R, (x_n)_{n \le N} \text{ nilpotent } N \ll 0 \}.$

It's well-define, i.e., for any n, the sequence

$$(P_k(x_{n-k,\ldots,x_n,y_{n-k},\ldots,y_n}))_{k\geq 0}$$

is constant for $k \gg 0$.

We

have
$$F[x_n] = [x_n^p], V[\dots, x_{-1}, x_0] = [\dots, x_{-2}, x_{-1}].$$
 For $H \in \mathsf{BT}_k$,
 $\mathbb{D}(H) = \operatorname{Hom}_k(H, \operatorname{CW}_k).$

It's some kind of Pontryagin duality. The action of F, V via them on CW. Then if $M = \mathbb{D}(H)$, one finds back H via

$$H = \operatorname{Hom}_{F,V}(M, \operatorname{CW}).$$

Example 5.1. $M = W(k) \cdot e$, Fe = e, Ve = pe, R is an \mathbb{F}_p -algebra.

$$\operatorname{Hom}_{F,V}(M, \operatorname{CW}(R)) = \left\{ [x_n]_{n \le 0} \mid x_n \in R, x_n^p = x_n, \sum_{n \le N} Rx_n \text{ nilpotent }, N \ll 0 \right\}.$$

Thus $x_n = 0$ for $n \ll 0$ and

$$\operatorname{Hom}_{F,V}(M, \operatorname{CW}(R)) = \mathbb{Q}_p/\mathbb{Z}_p(R).$$

This means $M = \mathbb{D}(\mathbb{Q}_p/\mathbb{Z}_p), \mathbb{Q}_p/\mathbb{Z}_p = \{ [x_n]_{n \le 0} \in \mathrm{CW} \mid x_n^p = x_n \}.$

Example 5.2. $M = W(k) \cdot e, Fe = pe, Ve = e,$

$$\begin{split} & \operatorname{Hom}_{F,V}(M,\operatorname{CW}(R)) = \{ [x_n]_{n \leq 0} \mid x_n \in R, x_{n-1} = x_n, x_n \text{ nilpotent } \} = \widehat{\mathbb{G}}_m(R). \\ & \text{Then } M = \mathbb{D}(\widehat{\mathbb{G}}_m), \, \widehat{\mathbb{G}}_m \xrightarrow{\sim} \operatorname{CW}^{V = \operatorname{Id}}, x \mapsto \sum_{n \leq 0} V^n[x]. \end{split}$$

Example 5.3. Let $\lambda = d/h \in (0, 1), d \ge 1, (d, h) = 1$. Denote

$$H_{\lambda} = \operatorname{Ker}(V^{d} - F^{h-d} : \operatorname{CW} \to \operatorname{CW})$$

= $\left\{ [\dots, z_{d-1}^{p^{h-d}}, \dots, z_{1}^{p^{h-d}}, z_{d-1}, \dots, z_{1}] \in \operatorname{CW} \mid z_{1}, \dots, z_{d-1} \text{ nilpotent} \right\}$

the formal *p*-divisible group of slope λ . Then $H_{\lambda} = \text{Spf}(k[[z_0, \ldots, z_{d-1}]])$. Denote by $M_{\lambda} = \mathbb{D}(H_{\lambda})$. Then $(M_{\lambda}[\frac{1}{p}], F)$ is a simple isocrystal of slope λ .

If
$$[x_k]_{k\geq 0} + [y_k]_{k\geq 0} = [p_k(x_0, \dots, x_k, y_0, \dots, y_k)]_{k\geq 0}$$
, then
 $(x_0, \dots, x_{-d+1}) + H_\lambda (y_0, \dots, y_{-d+1}) = (z_0, \dots, z_{-d+1}),$
 $z_0 = \lim_{k \to +\infty} P_{kd}(x_{d-1}^{p^{k(h-d)}}, \dots, x_0^{p^{k(h-d)}}, \dots, x_{-d+1}, \dots, x_0, \dots, y_0)$

for the $(x_0, \ldots, x_{-d+1}, y_0, \ldots)$ -adic topology on $k[[x_i, y_i]]$.

5.3. Period isomorphism in characteristic p. Let $F/\overline{\mathbb{F}}_p$ be a perfectoid field, H a p-divisible formal group over $\overline{\mathbb{F}}_p$. Let $M = \mathbb{D}(H)$ be the contravariant Dieudonné module. Denote

$$BW = \varprojlim_{V} CW = \{ [x_n]_{n \in \mathbb{Z}} \mid (x_n)_{n \leq N} \text{ is nilpotent}, N \ll 0 \}.$$

Then

$$0 \to W \to \mathrm{BW} \to \mathrm{CW} \to 0$$

is exact.

Since

$$H(\mathcal{O}_F) = \operatorname{Hom}(\operatorname{Spf}\mathcal{O}_F, H) = \varprojlim_{(0) \neq \mathfrak{a} \subset \mathcal{O}_F} H(\mathcal{O}_F/\mathfrak{a}),$$
$$\operatorname{CW}(\mathcal{O}_F) = \varprojlim_{G} \operatorname{CW}(\mathcal{O}_F/\mathfrak{a}) = \left\{ [x_n]_{n \leq 0} \mid x \in \mathcal{O}_F, \limsup_{n \to -\infty} |x_n| < 1 \right\}.$$

We have

$$H(\mathcal{O}_F) = \operatorname{Hom}_{W(k)[F,V]}(M, \operatorname{CW}(\mathcal{O}_F)).$$

H is formal if and only if F is topologically nilpotent on M and \mathcal{O}_F is perfect.

Proposition 5.4. The projection $BW(\mathcal{O}_F) \twoheadrightarrow CW(\mathcal{O}_F)$ induces

 $\operatorname{Hom}_{W(k)[F,V]}(M, \operatorname{BW}(\mathcal{O}_F)) \xrightarrow{\sim} \operatorname{Hom}_{W(k)[F,V]}(M, \operatorname{CW}(\mathcal{O}_F)).$

An inverse is given by

$$u \mapsto [x \mapsto \lim_{k \to +\infty} F^{-k} u(F^k x)].$$

If $(D, \varphi) = (M[\frac{1}{p}], F)$, one deduces

$$H(\mathcal{O}_F) = \operatorname{Hom}_{\varphi}(D, \operatorname{BW}(\mathcal{O}_F)).$$

Now

$$BW(\mathcal{O}_F) \hookrightarrow \mathcal{O}(Y_F) = B_F,$$
$$V^n[x_n] \mapsto [x_n^{p^{-n}}]p^n.$$

Thus

$$BW = \left\{ \sum_{n \in \mathbb{Z}} [x_n] p^n \mid x_n \in \mathcal{O}_F, \limsup_{n \to -\infty} |x_n|^{p^n} < 1 \right\} \subset B_F^+ = \mathcal{O}(Y_F \cup \{y_{\text{cris}}\})$$

contains all periods with slope in [0, 1].

Proposition 5.5. $\operatorname{Hom}_{\varphi}(D, \operatorname{BW}(\mathcal{O}_F)) = \operatorname{Hom}_{\varphi}(D, B_F).$

Example 5.6. For $\lambda = d/h \in (0, 1]$,

$$H_{\lambda}(\mathcal{O}_F) = B_F^{\varphi^h = p^d} = \mathrm{BW}(\mathcal{O}_F)^{V^d = F^{h-d}}$$
$$= \left\{ \sum_{k=0}^{d-1} \sum_{n \in \mathbb{Z}} [x_k^{p^{-nh}}] p^{nd+k} \mid x_0, \dots, x_{d-1} \in \mathfrak{m}_F \right\}.$$

If $\lambda = 1$, we have an isomorphism

$$\mathfrak{n}_F \xrightarrow{\to} B^{\varphi=p}$$
$$\varepsilon \mapsto \sum_{n \in \mathbb{Z}} [\varepsilon^{p^{-n}}] p^n$$

Denote by

$$\mathcal{L} = \sum_{n \ge 0} \frac{T^{p^n}}{p^n} \in \mathbb{Q}_p[[T]]$$

the logarithm of a *p*-typical formal group law \mathcal{F}/\mathbb{Z}_p . Then

$$X +_{\mathcal{F}} Y = \mathcal{L}^{-1}(\mathcal{L}(X) + \mathcal{L}(Y)) \in \mathbb{Z}_p[[X, Y]].$$

For $X +_{\widehat{\mathbb{G}}_m} Y = XY + X + Y, \log_{\widehat{\mathbb{G}}_m} = \log(1+T)$. Denote by $E(T) = \exp(\mathcal{L}(T)) \in \mathbb{Z}_p[[T]]$ the Artin-Hasse map. Then $E : \mathcal{F} \xrightarrow{\sim} \widehat{\mathbb{G}}_m$ and we have a commutative diagram

$$\begin{array}{c} (\mathfrak{m}_{F},+_{\mathcal{F}}) & \xrightarrow{\sim} & B^{\varphi=p} \\ E \bigg|_{\simeq} & \stackrel{\varepsilon \mapsto \sum\limits_{n \in \mathbb{Z}} [\varepsilon^{p^{-n}}]p^{n}}{} & \bigg| \\ (\mathfrak{m}_{F},+_{\widehat{\mathbb{G}}_{m}}) & \xrightarrow{\sim} & B^{\varphi=p}. \end{array}$$

If $\lambda = d/h \notin [0,1]$, $B^{\varphi^h = p^d}$ has no explicit description: the Banach-Colmez space $\mathbb{B}^{\varphi^h = p^d}$ is not representable by a perfectoid space but by a diamond (algebraic space for pro-étale topology).

5.4. **Periods in unequal characteristic.** Let C/\mathbb{Q}_p be an algebraically closed field, $F = C^{\flat}$, H/\mathcal{O}_C a formal *p*-divisible group. We are going to look at the universal cover $\lim_{x \to p} H$ of H.

Proposition 5.7. There is an isomorphism $\lim_{\stackrel{\leftarrow}{\searrow} p} H(\mathcal{O}_C) \xrightarrow{\sim} \lim_{\stackrel{\leftarrow}{\searrow} p} H(\mathcal{O}_C/p\mathcal{O}_C)$. The inverse is given by sending $(x_n)_{n\geq 0}$ to $(\lim_{k\to+\infty} p^{-k}\widetilde{x}_{n+k})_{n\geq 0}$ via any lift of $H(\mathcal{O}_C) = \lim_{\stackrel{\leftarrow}{\longrightarrow} p} H(\mathcal{O}_C/p\mathcal{O}_C) \rightarrow H(\mathcal{O}_C/p\mathcal{O}_C)$.

The last isomorphism comes from that H is p-divisible p^{∞} -torsion, $H_{\eta} = \overset{\circ}{B}_{C}^{d}$, while $\times p$ contracts everything to 0.

Suppose $\mathbb{H}/\overline{\mathbb{F}}_p$ is a *p*-divisible group with an identification

$$\mathbb{H} \otimes_{\overline{\mathbb{F}}_n} \mathcal{O}_C / p \mathcal{O}_C \xrightarrow{\sim} H \otimes_{\mathcal{O}_C} \mathcal{O}_C / p \mathcal{O}_C$$

Take $\varpi^{\sharp} = p$, then

$$\lim_{\substack{\leftarrow p \\ \leftarrow p }} H(\mathcal{O}_C) = \lim_{\substack{\leftarrow p \\ \leftarrow p }} H(\mathcal{O}_C/p\mathcal{O}_C) = \lim_{\substack{\leftarrow p \\ \leftarrow p }} \mathbb{H}(\mathcal{O}_F/\varpi\mathcal{O}_F)$$

$$= \lim_{\substack{\leftarrow p \\ \leftarrow p }} \mathbb{H}(\mathcal{O}_F) = \mathbb{H}(\mathcal{O}_F) = \operatorname{Hom}_{\varphi}(D, B_F),$$

where $(D, \varphi) = \mathbb{D}(\mathbb{H})$.

Remark 5.8. More generally

$$\lim_{\stackrel{\leftarrow}{\times p}} H_{\eta} = \overset{\circ}{B}_{C}^{d,1/p^{\infty}}$$

is a pre-perfectoid ball $\operatorname{Spf}[[X_0^{1/p^{\infty}}, \ldots, X_{d-1}^{1/p^{\infty}}]]_{\eta}$ over C, where $H_{\eta} = \overset{\circ}{B}_C^d$. The tilt of this is $(\mathbb{H}^{1/p^{\infty}} \otimes_{\overline{\mathbb{F}}_p} \mathcal{O}_F)_{\eta}$.

Let

$$\log_H : H_\eta \to \operatorname{Lie} H \otimes_{\mathcal{O}_C} \mathbb{G}_a^{\operatorname{rig}}$$

be the logarithm of the formal group H_{η} . This is a morphism of rigid analytic groups, which is an étale $H(\mathcal{O}_C)[p^{\infty}]$ -tower.

By applying $\varprojlim_{\times p}$ on the exact sequence

$$0 \to H(\mathcal{O}_C)[p^{\infty}] \to H_{\eta} \xrightarrow{\log_H} \operatorname{Lie} H \otimes_{\mathcal{O}_C} \mathbb{G}_a^{\operatorname{rig}} \to 0,$$

we get

$$0 \to V_p(H) \to \varprojlim_{p} H(\mathcal{O}_C) \xrightarrow{\log_H(x_0)} \operatorname{Lie} H[\frac{1}{p}] \to 0.$$

Rewrite it in terms of covariant isocrystals, we get

$$0 \to V_p(H) \to (D \otimes_{\check{\mathbb{Q}}_p} B_F)^{\varphi=p} \to \operatorname{Lie} H[\frac{1}{p}] \to 0.$$

Here let $\operatorname{Fil} D_C = \omega_{H^D} [\frac{1}{p}] \subset D_C$ be the Hodge filtration. Then $D_C/\operatorname{Fil} D_C = \operatorname{Lie} H[\frac{1}{p}]$ and the last map in the exact sequence is given by

$$(D \otimes_{\mathbb{Q}_p} B_F)^{\varphi = \mathrm{Id}} \longrightarrow \mathrm{Lie}H[\frac{1}{p}]$$

$$\bigcap_{D \otimes_{\mathbb{Q}_p}} B_F \xrightarrow{\mathrm{id} \otimes \theta} D_C$$

Example 5.9. When $H = \widehat{\mathbb{G}}_m$, this is just the fundamental exact sequence.

Proposition 5.10. $V_p(H) \to (D \otimes B)^{\varphi=p}$ induces an isomorphism

$$V_p(H) \otimes_{\mathbb{Q}_p} B[\frac{1}{p}]^{\varphi = \mathrm{Id}} \xrightarrow{\sim} (D \otimes_{\mathbb{Q}_p} B[\frac{1}{t}])^{\varphi = \mathrm{Id}}.$$

Use Poincaré duality, we get a perfect pairing

The right hand side map is an isomorphism after inverting t.

Corollary 5.11. For any p-divisible group H/\mathcal{O}_C , the corresponding $(D, \varphi, \operatorname{Fil} D_C)$ defines a modification of vector bundles on X_F at $\infty \in |X_F|$,

$$0 \to V_p(H) \otimes_{\mathbb{Q}_p} \mathcal{O}_X \to \mathcal{E}(D, p^{-1}\varphi) \to i_{\infty*} \mathrm{Lie}H[\frac{1}{p}] \to 0.$$

In particular, via $D_C = \mathcal{E}(D, p^{-1}\varphi)_{\infty} \otimes k(\infty), u : \mathcal{E}(D, p^{-1}\varphi) \twoheadrightarrow i_{\infty*}D_C, u^{-1}(i_{\infty*}\mathrm{Fil}D_C)$ is a trivial bundle.

6. Topics on classification theorem

6.1. Lubin-Tate space. Let $\mathbb H$ be a 1-dimensional hegith n formal p-divisible group. Let

$$\mathfrak{X} = \mathrm{Def}(\mathbb{H}) \simeq \mathrm{Spf}(W(\overline{\mathbb{F}}_p)[[X_1, \dots, X_{n-1}]]).$$

Then we have Gross-Hopkins period morphism, which is an anlog of Griffiths period morphism.

$$\begin{aligned} \mathfrak{X}_{\eta} &= \overset{\circ}{B}_{\breve{\mathbb{Q}}_{p}}^{n-1} \\ \downarrow^{\pi_{\mathrm{dR}}} \\ \mathbb{P}_{\breve{\mathbb{Q}}_{p}}^{n-1} \end{aligned}$$

Denote $(D, \varphi) = \mathbb{D}(\mathbb{H})$. Then for $x \in \mathfrak{X}(\mathcal{O}_C) = \mathfrak{X}_{\eta}(C)$, $\pi_{\mathrm{dR}}(x) = \mathrm{Fil}D_C \subset D_C$ is a codimension $1 = \dim \mathbb{H}$ subspace, that is, the Hodge filtration of $x^* H^{\mathrm{univ}}/\mathcal{O}_C$, where $H^{\mathrm{univ}}/\mathfrak{X}$ is a universal deformation.

Theorem 6.1 (Lafaille, Gross-Hopkins). π_{dR} is a surjective étale cover.

That's to say, any codimension one subspace $\operatorname{Fil}D_C$ is the Hodge filtration of a lift of \mathbb{H} to \mathcal{O}_C . This is a *p*-adic analog of Kodaira-Spencer map. The étaleness follows from Grothendieck-Messing deformation theory.

We have $\mathcal{E}(D, p^{-1}\varphi) = \mathcal{O}_X(\frac{1}{n}).$

Corollary 6.2. For any degree 1 modification of $\mathcal{O}_X(\frac{1}{n})$,

$$0 \to \mathcal{E} \to \mathcal{O}_X(\frac{1}{n}) \to \mathcal{F} \to 0$$

where \mathcal{F} is a degree 1 torsion coherent sheaf, we have trivial $\mathcal{E} \simeq \mathcal{O}_X^n$.

Conversely,

Proposition 6.3. For

$$0 \to \mathcal{O}_X^n \to \mathcal{E} \to \mathcal{F} \to 0$$

where \mathcal{F} is a degree 1 torsion coherent sheaf, we have $\mathcal{E} = \mathcal{O}_X(\frac{1}{d}) \oplus \mathcal{O}_X^{n-d}, 1 \leq d \leq n$.

The modification is given by a surjection

$$u: C(-1)^n = (t^{-1}B^+_{\mathrm{dR}}/B^+_{\mathrm{dR}})^n \twoheadrightarrow L,$$

where L is a one-dimensional C-vector space. Here $\widehat{\mathcal{O}}_{X,\infty}^n \subset \widehat{\mathcal{E}}_\infty \subset t^{-1}\widehat{\mathcal{O}}_{X,\infty}^n$. Up to replacing \mathcal{O}_X^n by \mathcal{O}_X^{n-i} and \mathcal{E} by \mathcal{E}' with $\mathcal{E} = \mathcal{E}' \oplus \mathcal{O}_X^i$, one can suppose $u : \mathbb{Q}_p(-1)^n \hookrightarrow L$, i.e., $u \in \Omega(C) \subset \mathbb{P}^{n-1}(C)$.

We want to prove this if $u \in \Omega(C)$, then $\mathcal{E} \cong \mathcal{O}_X(\frac{1}{n})$. Let $D = \operatorname{End}(\mathcal{O}_X(\frac{1}{n})) = D_{\frac{1}{n}}$ be the division algebra with invariant $\frac{1}{n}$. It induces $D \otimes_{\mathbb{Q}_p} \mathcal{O}_X \xrightarrow{\sim} \operatorname{End}(\mathcal{O}_X(\frac{1}{n}))$ and $D_X^{\operatorname{op},\times} \xrightarrow{\sim} \operatorname{Aut}(\mathcal{O}_X(-\frac{1}{n})) = \operatorname{GL}(\mathcal{O}_X(-\frac{1}{n}))$ as X-group schemes. Thus $(D^{\operatorname{op}})_X^{\times}$ torsors over X (pure inner form of GL_n) is equivalent to GL_n -torsors on X (vector bundle of rank n). In fact, if \mathcal{T} is a topos, G is a group on \mathcal{T} , \mathbb{T} is a G-torsor in \mathcal{T} , $H = G^{\mathbb{T}}$ is the inner twisting of G,

$$[\mathbb{T}] \in \mathrm{H}^{1}(\mathcal{T}, G) \to \mathrm{H}^{1}(\mathcal{T}, G_{\mathrm{ad}}) \ni [H] = [\underline{\mathrm{Aut}}(\mathbb{T})].$$

Then $t \mapsto \underline{\text{Isom}}(\mathbb{T}, t)$ induces the equivalence between G-torsors and H-torsors. Now

$$0 \to \mathcal{O}_X^n \to \mathcal{E} \to \mathcal{F} \to 0$$

is equivalent to

$$0 \to \mathcal{O}_X(-\frac{1}{n}) \to \mathcal{E}' \to \mathcal{F}' \to 0$$

as $D^{\mathrm{op}} \otimes \mathcal{O}_X$ -module. Take dual modification, we get

$$0 \to \mathcal{E}'' \to \mathcal{O}_X(\frac{1}{n}) \to \mathcal{F}'' \to 0$$

as $D \otimes \mathcal{O}_X$ -module.

Theorem 6.4 (Drinfeld). Any element of $\Omega(C)$ is the Hodge filtration of a special formal \mathcal{O}_D -module.

Hence $\mathcal{E}'' \simeq D \otimes_{\mathbb{Q}_p} \mathcal{O}_X$. The result follow by applying $\operatorname{Hom}(\mathcal{O}_X(\frac{1}{n}), -)$.

6.2. Proof of the classification for rank two vector bundles.

Proposition 6.5. Let \mathcal{F} be a degree one torsion coherent sheaf on X. (1) If

 $0 \to \mathcal{E} \to \mathcal{O}(d_1) \oplus \mathcal{O}(d_2) \to \mathcal{F} \to 0$ with $d_1 \neq d_2$, $\mathcal{E} \cong \mathcal{O}(d_1 - 1) \oplus \mathcal{O}(d_2)$ or $\mathcal{O}(d_1) \oplus \mathcal{O}(d_2 - 1)$.
(2) If $0 \to \mathcal{E} \to \mathcal{O}(d) \oplus \mathcal{O}(d) \to \mathcal{F} \to 0,$ $\mathcal{E} \cong \mathcal{O}(d - \frac{1}{2})$ or $\mathcal{O}(d - 1) \oplus \mathcal{O}(d)$.
(3) If $0 \to \mathcal{E} \to \mathcal{O}(d + \frac{1}{2}) \to \mathcal{F} \to 0,$

 $\mathcal{E} \cong \mathcal{O}(d)^2.$

(1) by explicit computation. (2) is a consequence of Lubin-Tate case. (3) is a consequence of Drinfeld case.

Let \mathcal{E} be a rank 2 vector bundle on X. Then there is

In both cases,

 $0 \to \mathcal{E} \to \mathcal{O}_X(d)^2 \to \mathcal{F} \to 0.$

Let Fil[•] be a filtration of \mathcal{F} such that $\operatorname{gr}^{i}\mathcal{F}$ is zero or degree one torsion coherent sheaf, $\forall i$. Take Fil[•] $\mathcal{O}_{X}(d)^{2} = u^{-1}(\operatorname{Fil}^{\bullet}\mathcal{F})$. Then for any i, Filⁱ⁺¹($\mathcal{O}_{X}(d)^{2}$) is Filⁱ($\mathcal{O}_{X}(d)^{2}$), or a degree one modification of Filⁱ($\mathcal{O}_{X}(d)^{2}$). By induction on $i \in \mathbb{Z}$, we get Filⁱ($\mathcal{O}_{X}(d)^{2}$) = $\mathcal{O}(k + \frac{1}{2})$ or $\mathcal{O}(k_{1}) \oplus \mathcal{O}(k_{2})$.

6.3. Weakly admissible implies admissible. Let K/\mathbb{Q}_p be a discrete valuation field with perfect residue field. Denote $C = \widehat{\overline{K}}, G_K = \operatorname{Gal}(\overline{K}/K), K_0 = W(k_K)_{\mathbb{Q}}, \sigma$ the Frobenius on K_0 . Denote by φ -ModFil_{K/K_0} the category of triples $(D, \varphi, \operatorname{Fil}^{\bullet} D_K)$, where (D, φ) is an isocrystal and Fil[•] is a Hodge filtration of D_K . Define

$$t_N = v_p(\det \varphi)$$
$$t_H = \sum i \dim \operatorname{gr}^i D_K$$

Denote

$$\mathbb{V}_{\mathrm{cris}}(D,\varphi,\mathrm{Fil}^{\bullet}D_K) = \mathrm{Fil}^0(D\otimes_{K_0}B_{\mathrm{cris}})^{\varphi=\mathrm{Id}} = \mathrm{Fil}^0(D\otimes_{K_0}B[\frac{1}{t}])^{\varphi=\mathrm{Id}}$$

There is a G_K -action on it.

Definition 6.6. $(D, \varphi, \operatorname{Fil}^{\bullet} D_K)$ is admissible if

$$\dim_{\mathbb{Q}_n} \mathbb{V}_{\mathrm{cris}}(D, \varphi, \mathrm{Fil}^{\bullet} D_K) = \dim_{K_0} D.$$

Definition 6.7. $(D, \varphi, \operatorname{Fil}^{\bullet} D_K)$ is weakly admissible if $t_H = t_N$, and for any subisocrystal $D' \subset D$, $t_H(D', \varphi|_{D'}, D'_K \cap \operatorname{Fil}^{\bullet} D_K) \leq t_N(D', \varphi|_{D'}, D'_K \cap \operatorname{Fil}^{\bullet} D_K)$. Theorem 6.8 (Colmez-Fontaine). Weakly admissible is equivalent to admissible.

 \Leftarrow is easy.

28

We reinterpretate in terms of semi-stability. Take deg = $t_H - t_N$, rk = dim_{K₀} $D, \mu =$ deg /rk, then φ -ModFil^{wa}_{K/K₀} = φ -ModFil^{ss,0}_{K/K₀}.

The action on G_K on $X_{C^{\flat}}$ stablizes ∞ . For any $(D, \varphi, \operatorname{Fil}^{\bullet} D_K)$, $\mathcal{E}(D, \varphi)$ is a G_K -equivariant vector bundle on X and $\Lambda = \operatorname{Fil}^0(D \otimes B_{\mathrm{dR}})$ is a lattice in $\widehat{\mathcal{E}}_{\infty}[\frac{1}{t}]$. This gives a modification of \mathcal{E} , denoted by $\mathcal{E}(D, \varphi, \operatorname{Fil}^{\bullet} D_K)$. Then

$$\deg \mathcal{E}(D, \varphi, \operatorname{Fil}^{\bullet} D_{K})$$

= deg $\mathcal{E}(D, \varphi)$ + [Fil⁰ $D \otimes B_{\mathrm{dR}} : D \otimes B_{\mathrm{dR}}^{+}] - t_{N}(D, \varphi)$
= deg $(D, \varphi, \operatorname{Fil}^{\bullet} D_{K}),$

and $\mathrm{H}^{0}(X, \mathcal{E}(D, \varphi, \mathrm{Fil}^{\bullet}D_{K})) = \mathbb{V}_{\mathrm{cris}}(D, \varphi, \mathrm{Fil}^{\bullet}D_{K}).$

The classification theorem tells that, if \mathcal{E} is a semi-stable vector bundle of slope 0, then $\dim_{\mathbb{Q}_p} \mathrm{H}^0(X, \mathcal{E}) = \mathrm{rk}\mathcal{E}$. Now for $A \in \varphi$ -ModFil_{K/K_0},

- A is admissible $\iff \mathcal{E}(A)$ is semi-stable of slope 0 and for any sub-bundle $\mathcal{E}' \subset \mathcal{E}(A), \mu(\mathcal{E}') \leq 0;$
- A is weakly admissible \iff A is semi-stable of slope 0 and for any strict sub-object $B \subset A, \mu(B) \leq 0$.

Proposition 6.9. There is an equivalence between the category of strict subobject of A and G_K -equivariant subobject of $\mathcal{E}(A)$.

If A is weakly admissible, the Harder-Narasimhan filtration of $\mathcal{E}(A)$ is G_{K} -invariant. Thus it comes from a filtration of A. Since A is semi-stable, this is the tautological filtration and then $\mathcal{E}(A)$ is semi-stable, A is admissible.