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Abstract. The main theme of this course will be to understand and give a
meaning to the notion of a p-adic Hodge structure. Starting with the work
of Fontaine, who introduced many of the basic notions in the domain, it took
many years to understand the exact definition of a p-adic Hodge structure.
We now have the right definition: this involves the fundamental curve of p-
adic Hodge theory and vector bundles on it. In the course I will explain the
construction and basic properties of the curve. I will moreover explain the
proof of the classification of vector bundles theorem on the curve. As an
application I will explain the proof of weakly admissible implies admissible.
In the meanwhile I will review many objects that show up in p-adic Hodge
theory like p-divisible groups and their moduli spaces, Hodge-Tate and de
Rham period morphisms, and filtered φ-modules.

This is a note of the lectures in MCM, Beijing from 2019/11/01 to 2020/01/10.

Date: Recorded by Shenxing Zhang. Not revised yet.
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1. Introduction

1.1. What is a p-adic Hodge structure? Recall a real pure Hodge structure of
weight w ∈ Z is a finitely dimensional real vector space V , endowed with a bigrading

VC =
⊕

p+q=w

V p,q

such that V p,q = V q,p. For example, let X/C be a proper smooth algebraic variety.
Then Hi(X(C),R) is equipped with a real Hodge structure of weight i as

Hi(X(C),R)C =
⊕

p+q=i

Hq(X,Ωp).

In p-adic setting, there are plenty of different structures and results
• Hodge-Tate Galois representations;
• crystalline representations;
• de Rham representations;
• filtered ϕ-modules à la Fontaine;
• Breuil-Kisin modules;
• (ϕ,Γ)-modules;
• comparison theorems for proper smooth algebraic variety over Qp.

This is a mess! We should back to real case to find the solution.

1.2. Real Hodge structure. Recall Simpson’s geometric point of view of twists.
Denote

P̃1
R = P1

C/

{
z ∼ −1

z̄

}
where z is the coordinate on P1

C. This is a conic curve without real point, equipped
with ∞. Obviouly P1

C is a double cover of P̃1
R.

P1
C

Z/2Z π

0

<<
<<

<<
<<

< ∞

��
��
��
��
�

P̃1
R ∞

The action of C× on P1
C as λ.z = λz descends to an action of U(1) on P̃1

R. Then
∞ is the unique fixed point of this action and the unqiue point that has a finite
orbit.

Consider the vector bundles on P̃1
R. For λ ∈ 1

2Z, define

OP̃1
R
(λ) =

{
π∗OP1

C
(2λ), λ /∈ Z;

L such that π∗L = OP1
C
(2λ), λ ∈ Z.

Here the slope of OP̃1
R
(λ) is λ.

Proposition 1.1. There is a bijection between the set of finite decreasing half
integer sequences {

λ1 ≥ · · · ≥ λn | λi ∈
1

2
Z, n ∈ N

}
and the isomorphic classes of vector bundles on P̃1

R as

(λi) 7−→

[⊕
i

OP̃1
R
(λi)

]
.
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In particular,

VectR
∼−→

{
slope 0 semisimple vector bundles over P̃1

R

}
V 7−→ V ⊗OP̃1

R

H0(P̃1
R, E)←−[ E .

That is to say, every Harder-Narasimhan filtration of vector bundles are split
and every semisimple vector bundle of pure slope are OP̃1

R
(λ)n.

Let V be a real vector space with a filtration Fil• on VC = V ⊗R C. Denote by t
the uniformization of P̃1

R at ∞ and
VC((t)) = V ⊗R C((t)) = VC ⊗C C((t)).

There is a canonical filtration
{
tkC[[t]]

}
k
on C((t)), which induces a filtration on

VC((t)) as
Filk(VC((t))) =

∑
i∈Z

FiliVC ⊗C t
k−iC[[t]].

Then
ÔP̃1

R,∞
= C[[t]], (V ⊗R OP̃1

R
)∧∞ = VC((t))

and the C[[t]]-lattice
Λ := Fil0(VC((t))) ⊂ VC((t))

defines a modification of vector bundles

(V ⊗R OP̃1
R
)|P̃1

R\{∞}
∼−→ E|P̃1

R\{∞},

such that Ê∞ = Λ. This is U(1)-equivalent and induces a bijection

{filtrations on VC}
∼−→

{
U(1)-equiv. modif. V ⊗R OP̃1

R
 E

}
and thus

{(V,Fil•VC)}
∼−→

{
U(1)-equiv. modif. E1  E2

E1 semisimple of slope 0, U(1) y H0(E1) trivially

}
.

Definition 1.2. A real Hodge structure is a finitely dimensional real vector space
V , endowed with a bigrading decomposition

VC =
⊕
p,q∈Z

V p,q
C ,

such that V p,q = V q,p. Thus for any integer w, there is a subspace Vw ⊂ V such
that

Vw,C =
⊕

p+q=w

V p,q,

which is called weight w part of V . If V = Vw, V is called pure of weight w.
We say (V,Fil•VC) defines a Hodge struture of weight w if there is a real Hodge

struture on V of pure weight w such that FilnVC = ⊕p≥nV
p,w−p.

Proposition 1.3. (V,Fil•VC) defines a weight w Hodge struture if and only if E2
is semisimple of slope w/2 in the corresponding modification.

This induces a bijection between the set of weight w pure real Hodge structures
and the set of U(1)-equivalent modifications E1  E2 on P̃1

R\ {∞}, where E1 is
semisimple of slope 0, E2 is semisimple of slope w/2 and U(1) acts on H0(E1)
trivially.

WE are going to do the same in the p-adic setting.
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real setting p-adic setting
P̃1
R\ {∞}x U(1) the curve X x Gal(Q̄p/Qp)

C[[t]] = ÔP̃1
R

B+
dR = ÔX,∞

λ.t = λt σ.t = χcyc(σ)t, t = log[ε]

P1
C

��
Z/2Z

P̃1
R

X∞

��
Ẑ

X

Thus the vector bundles on X is endowed with Gal(Qp/Qp)-action.

2. The curve Y

There are two versions of the curve.
• Xad adic version analog of p-adic Reimann surface,
• X schematical version analog of a proper smooth algebraic curve.

There is an analytification morphism (GAGA) Xad → X and an “ample” line
bundle O(1) on Xad such that

X = Proj(
⊕
d≥0

H0(Xad,O(d))).

Both rely on the construction of an intermediate adic space Y endowed with a
“crystalline” Frobenius ϕ.

Let C be a complete algebraically closed field of characteristic 0. Define the tilt
C♭ the inverse limit of C with respect to Frobenius, which is an algebraically closed
field of characteristic p. Let B+

dR be the completion of Ainf =W (OC♭) with repect
to (p− [p♭]) with quotient field BdR, Acris the completion of divided power of Ainf

and Be = Bφ=1
cris .

The p-adic comparison theorems for crystalline/de Rham/étale cohomology lead
one to consider the category of pairs (We,W

+
dR) where We is a free Be-module and

W+
dR is a free B+

dR-module such that
BdR ⊗Be

We = BdR ⊗B+
dR
W+

dR.

We will construct a curve X such that Be = O(X − {∞}), B+
dR = OX,∞. The

fundamental exact sequence
0→ Qp → Be → BdR/B

+
dR → 0

tells us the sections. The category of (We,W
+
dR) corresponds to the category of

vector bundles over X. Since Be = Bφ=1
cris , this suggests

Xad = Y ad/ϕZ

where Y ad = Spa(Ainf)− (p[p♭]).
In general, let E be a discretely valued non-archemedean field with uniformizer

π with finite residue field Fq = OE/π. Let F/Fq be a perfectoid field, i.e., a perfect
field, complete with respect to a non-trivial absolute value | · | : F → R≥0. We will
attach to this data a curve XF,E/E. More generally, we can define “a family of
curves”

XS = (Xk(s))s∈|S|

for perfectoid S/Fq. If G is a reductive group over E, one can define a stack
BunG : S → {G-bundles on XS} .

We will study the perverse `-adic sheaves on BunG.
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2.1. Affinoid space and adic space. Let’s recall the definition of adic spaces.
This is not a prt of the lectures. Let k be a nonarchimedean field and R a topological
k-algebra.
Definition 2.1. (1) If there is a subring R0 ⊂ R such that {aR0}a∈k× forms

a basis of open neighborhoods of 0, it’s called a Tate k-algebra. A subset
M ⊂ R is called bounded if M ⊂ aR0 for some a ∈ k×.

(2) An affinoid k-algebra is a pair (R,R+) consisting of a Tate k-algebra R and
open integrally closed subring R+ ⊂ R◦.

(3) An affinoid k-algebra (R,R+) is said to be tft ifR is a quotient of k〈T1, . . . , Tn〉
for some n and R+ = R◦.

Definition 2.2. Denote by X = Spa(R,R+) the set of equivalent classes of con-
tinuous valuations on R, which is ≤ 1 on R+. We equip X the topology which has
open rational subsets

U

(
f1, . . . , fn

g

)
= {x ∈ X | |fi(x)| ≤ |g(x)|,∀x ∈ X}

as basis, where f1, . . . , fn generates R.
Definition 2.3. A topological space X is called spectral if it satisfies the following
equivalent properties.

(1) There is some ring A such that X ∼= SpecA.
(2) X is an inverse limit of finite T0 spaces.
(3) X is quasicompact, has a quasicompact topological basis, stable under finite

intersections, and every irreducible closed subset has a unique generic point.
Theorem 2.4. The space Spa(R,R+) is spectral and Spa(R,R+) ∼= Spa(R̂, R̂+).

Theorem 2.5. (1) If X = ∅, then R̂ = 0.
(2) If R is complete and |f(x)| 6= 0,∀x ∈ X, then f is invertible.
(3) If |f(x)| ≤ 1,∀x ∈ X, then f ∈ R+.

Consider the topological algebra R[f1g−1, . . . , fnh
−1] ⊂ R[g−1] and denote by B

the integral closure of R+[f1g
−1, . . . , fng

−1] in it, then (R[f1g
−1, . . . , fng

−1], B) is
an affinoid k-algebra with completion (R〈f1g−1, . . . , fng

−1〉, B̂). Then
Spa(R〈f1g−1, . . . , fng

−1〉, B̂)→ Spa(R,R+)

factors through U
(

f1,...,fn
g

)
and it satisfies the corresponding universal property.

Define presheaves
(OX(U),O+

X(U)) = (R〈f1g−1, . . . , fng
−1〉, B̂)

and on general W ,
OX = lim←−

U⊂W

OX(U).

Moreover U ∼= Spa(OX(U),O+
X(U)).

The stalk OX,x is a local ring with maximal ideal {f | f(x) = 0} and O+
X,x is a

local ring with maximal ideal {f | f(x) < 1}.

Definition 2.6. We call R is strongly neotherian if R̂〈T1, . . . , Tn〉 is noetherian for
any n.
Theorem 2.7. If R is strongly neotherian, then OX is a sheaf.
Definition 2.8. Consider triple (X,OX , (|·(x)|, x ∈ X)) where (X,OX) is a locally
ringed space and | · (x)| is a continuous valuation on OX,x for any x ∈ X. Such
triple isomophic to Spa(R,R+) where OX is a sheaf is called an affinoid adic space.

It is called an adic space if it’s locally an affinoid adic space.
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Proposition 2.9. For affinoid adic space X = Spa(R,R+) and any adic space Y
over k,

Hom(Y,X) = Hom((R̂, R̂+), (OY (Y ),O+
Y (Y ))).

Example 2.10. Assume that k is complete and algebraically closed. Let R = k〈T 〉
and R+ = R◦ = k◦〈T 〉. Fix a norm | · | : k → R≥0. Then X = Spa(R,R+) consists
of

(1) The classical point. For x ∈ k◦,
R −→ R≥0

f =
∑

anT
n 7−→ |f(x)| = |

∑
anx

n|.

(2)(3) The rays of the tree. For 0 ≤ r ≤ 1, x ∈ k◦,
R −→ R≥0

f =
∑

an(T − x)n 7−→ sup |an|rn = sup
y∈k◦,|y−x|≤r

|f(y)|.

If r = 0, it is the classical point. If r = 1, it doesnot depend on x, which is called
the Gausspoint.

If r ∈ |k×|, it’s said to be of type (2), otherwise of type (3).
(4) Dead ends of the tree. Let D1 ⊃ D2 ⊃ · · · be a sequence of disks with

∩Di = ∅. It occurs when k is not spherically complete.
R −→ R≥0

f 7−→ infi sup
x∈Di

|f(x)|.

(5) For Γ = R≥0 × γZ, where γ = r− or r+(r < 1).
R −→ Γ ∪ {0}

f =
∑

an(T − x)n 7−→ sup |an|γn.

This only depends on the disc D(x,< r) or D(x, r). Thus if r /∈ |k×|, it’s of type
(3). Every rays of point of type (2) correspond a valuation of type (5).

2.2. Holomorphic function of the variable p. Let E be a finite extension of Qp

with residue field Fq. As a comparison, we also take E = Fq[[t]]. It is the coefficient
field of the p-adic Hodge theory.

Definition 2.11. Define

A = Ainf =

{
WOE

(OF ) =W (OF )⊗W (Fq) OE , E/Qp,

OF ⊗̂FqOE = OF [[π]], E = Fq[[t]].

Then

A =

∑
n≥0

[xn]π
n

∣∣∣∣∣∣xn ∈ OF

 .
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Fix $ ∈ F with 0 < |$| < 1. Then A is complete under the (π, [$])-adic
topology. Consider the adic space Spa(A,A). It has only one closed point with
kernel (π,mF ). Define

Y = Spa(A,A)a = Spa(A,A)\ {closed point} = Spa(A,A)\V (π, [$])

and an open subspace
Y = Spa(A,A)\V (π[$]).

Here the subscript a indicates we take the analytic points and Y is not affinoid.
Consider the space of holomorphic functions O(Y ). Let

A
[
1

π
,

1

[$]

]
=

{ ∑
n�−∞

[xn]π
n

∣∣∣∣∣xn ∈ F, sup |xn| < +∞

}
be the set of holomorphic functions on Y that are meromorphic along (π), ([$]).
For ρ ∈ (0, 1), f =

∑
n�−∞[xn]π

n, define the Gauss norms

|f |ρ := sup
n
|xn|ρn = sup

|y|≤ρ

f(y).

Proposition 2.12. The space
B = O(Y )

is the completion of A
[
1
π ,

1
[ϖ]

]
with respect to {| · |ρ}.

For compact subset I ⊂ (0, 1), the completion BI with respect to {| · |ρ∈I} is a
Banach E-algebra and

B = lim←−
I⊂(0,1)

BI

is a Fréchet space. In particular, if I = [ρ1, ρ2], BI is the completion with respect
to {| · |ρ1 , | · |ρ2}.

In the case E = Fq[[π]],

Y = D∗
F = {0 < |π| < 1} ⊂ A1

F

and

B = O(Y ) =

{ ∑
n�−∞

xnπ
n

∣∣∣∣∣xn ∈ F, lim
n→+∞

|xn|ρn = 0,∀ρ

}
.

We have natural maps

D∗
F

{{xx
xx
xx
xx
x

))RR
RRR

RRR
RRR

RRR
RR

Spa(F ) D∗
Fq

= Spa(Fq((π))) = Spa(E).

The map on the left is locally of finite type, but D∗
F → Spa(E) is not.

Remark 2.13. If (xn) ∈ FZ such that lim|n|→+∞ |xn|ρn = 0,∀ρ, then
∑

[xn]π
n ∈ B.

But not every element can be written in this form.

2.3. Newton polygon.

Proposition 2.14. |fg|ρ = |f |ρ|g|ρ, i.e., | · | is a valuation.

For ρ = q−r, r ∈ (0,+∞), |f |ρ = q−vr(f), where
vr(f) := inf(v(xn) + nr).

Here v = − logq | · | on F . Then r 7→ vr(f) is a convex function.
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In the case E = Fq[[π]], f =
∑
xnπ

n ∈ O(Y ) defines a Newton polygon Newt(f)
the decreasing convex hull of {(n, v(xn))} . Then positive slopes of Newt(f) one-to-
one correspond to the set of valuations of roots of F on D∗

F .
Assume E/Qp. Recall the Legendre transform gives a bijection between the set

of convex decreasing function R→ R∪{∞} , 6≡ +∞ and the set of concave function
(0,+∞)→ R ∪ {−∞}, 6≡ −∞ as

L(ϕ)(r) = inft∈R(ϕ(t) + tr),

L−1(ψ)(t) = sup
r∈(0,∞)

(ψ(r)− tr).

Proposition 2.15. For convex decreasing function f, g : R→ R ∪ {∞}, we have

L(f ~ g) = L(f) + L(g),

where
(f ~ g)(x) = infa+b=x(f(a) + g(b)).

The Legendre transform maps polygons to polygons, and the slopes of ϕ (resp. ψ)
one-to-one correspond to the x-coordinates of break points of L(ϕ) (resp. L−1(ψ)).

Proposition 2.16. For nonzero f ∈ B, there is a sequence {fn} in A
[
1
π ,

1
[ϖ]

]
tending to f . Then for any compact subset K ⊂ (0,+∞), there is an integer N
such that for any n ≥ N , vr(f) = vr(fn) for any r ∈ K.

As a corollary, the convex function r 7→ vr(f) is a polygon with integral slopes.

Define
Newt(f) := L−1(r 7→ vr(f)).

Then
Newt(fg) = Newt(f)~Newt(g).

Let I ⊂ (0, 1) be a compact subset and 0 6= f ∈ BI . Denote by NewtI(f) the part
of Newton polygon consisting of the slope in − logq(I) part. But {vr(f)}r∈− logq(I)

do not determine NewtI(f). For example, I = {q−r}, we need to know the left and
right break point of the slope r part to determine NewtI(f).

Denote by ∂l, ∂r the left/right derivation. Then (vr(f), ∂lvr(f), ∂rvr(f))r∈− logq(I)

determine NewtI(f). The rank 2 valuations with image in R× Z

f 7→ (vr(f),−∂lvr(f)),

f 7→ (vr(f), ∂rvr(f)),

are specializations of vr.

2.4. Zeros of holomorphic functions. Recall Jensen’s inequality/equality. For
nonzero f ∈ O(C) such that f(0) 6= 0. Let R > 0 such that f has no zero on
{|z| = R}. Let a1, . . . , an be zeros of f in {|z| < R}. Then

ln |f(0)| = 1

2π

∫ 2π

0

ln |f(Reiθ)|dθ − n lnR+

n∑
i=1

ln |ai|

and

ln |f(0)| ≤M(R)− n lnR+

n∑
i=1

ln |ai|,

where M(R) is the maximal modulus on {|z| = R}.
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In the non-zrchimedead setting, there is an equality. Assume E = Fq[[π]]. For
nonzero f =

∑
n≥0 xnπ

n ∈ O(DF ), f(0) = x0 6= 0. Assume it has roots (ai)i≥1

with v(a1) ≥ v(a2) ≥ . . . . Then the slopes of Newt(f) are valuations of roots of f ,

v(f(0)) = vr(f)− nr +
n∑

i=1

v(ai).

We want to do the same for E = Qp. We need to define zeros of f in this setting.
For E = Fq((π)),

Y = D∗
F = {0 < |π| < 1}

and
|Y |cl =

{
z ∈ F̄ | 0 < |z| < 1

}
/Gal(F̄ /F )

= {P ∈ F [π] | irreducible with all roots such that 0 < |z| < 1} /F×

= {P ∈ OF [π] | unitary irreducible such that 0 < |P (0)| < 1} .

Definition 2.17. f =
∑

n≥0 xnπ
n ∈ A is (distinguished) primitive of degree d > 0

if x0 6= 0, x0, . . . , xd−1 ∈ mF , xd ∈ O×
F .

ByWeierstrass fatorization, f = uP uniquely where u ∈ OF [[π]]
× and P ∈ OF [π]

is unitary with degree d. Thus
|Y |cl = {primitive irreducible elements} /OF [[π]]

×.

Assume E/Qp.

Definition 2.18. f =
∑

n≥0[xn]π
n ∈ A is primitive of degree d if x0 6= 0, x0, . . . , xd−1 ∈

mF , xd ∈ O×
F .

It’s equivalent to say, f modπ 6= 0 in OF and f modWOE
(OF ) 6= 0 inWOE

(kF )
d.

The degree of f is vπ(f modWOE
(OF )). Thus deg(fg) = deg f + deg g.

Definition 2.19.
|Y |cl = {irreducible primitive} /A×.

We will show that this is the set of the classical points of Y .

2.5. Perfectoid fields and tilting.

Definition 2.20. A complete field K with respect to a norm | · | : K → R≥0 is
called a perfectoid field, if there is an element $ ∈ K such that |p| ≤ |$| < 1 such
that Frob : OK/$ → OK/$ is surjective.

For example, Q̂(ζp∞)(p > 2), ̂Qp(p1/p
∞). An algebraic closed complete valued

field is perfectoid. In char p case, K is perfectoid if and only if it is perfect.
Let K be a perfectoid field. Define the tilting

K♭ = lim←−
x7→xp

K =
{
(x(n))n≥0 ∈ KN | (x(n+1))p = x(n)

}
,

with
(xy)(n) = x(n)y(n), (x+ y)(n) = lim

k→+∞
(x(n+k) + y(n+k))p

k

.

Define
x# := x(0)

and
| · | : K♭ −→ R≥0

x 7−→ |x#|.
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Then K♭ is also perfectoid. Moreover, there is an isomorphism

OK♭
∼−→ lim←−

x 7→xp

OK/p

x 7→ (x(n) mod p)n≥0

lim
k→+∞

(ŷn+k)
pk

← [ (yn)n≥0.

Example 2.21. If K is of characteristic p, then K♭ = K.

Example 2.22. If K = Q̂p(ζp∞), ε = (ζpn)n≥0 ∈ K♭ and πϵ = ε − 1 ∈ K♭, then
K♭ = Fp((π

1/p∞

ϵ )). In fact, Zp(ζp∞)/p
∼−→ Fp(π

1/p∞

ϵ )/πϵ.
If K = ̂Qp(p1/p

∞), π = (p1/p
n

)n≥0 ∈ K♭, then K♭ = Fp((π
1/p∞

)). In fact,
Zp(p

1/p∞
)/p

∼−→ Fp(π
1/p∞

)/π.

Remark 2.23. In fact, Fontaine gave the isomorphism

R♭ = lim←−
x 7→xp

R/pR
∼−→

{
(x(n))n≥0 ∈ RN | (x(n+1))p = x(n)

}
for any separated complete p-adic ring R.

Theorem 2.24. Let K be a perfectoid field. Then
(1) If L/K is finite, then L is perfectoid and [L♭ : K♭] = [L : K].
(2) OL/OK is almost étale, i.e., if n = [L : K],∀0 < ε < 1,∃e1, . . . , en ∈ OL

such that
ε ≤ |disc(TrL/K(eiej))1≤i,j,≤n| ≤ 1.

(3) (·)♭ induces an equivalence between the set of finite étale K-algebras and
the set of finite étale K♭-algebras.

Corollary 2.25. (1) K is algebraically closed if and only if K♭ is.
(2) Gal(K/K)

∼−→ Gal(K♭/K♭), where K♭ is the union of all L♭ where L/K
is finite.

Proposition 2.26. The functors

{p-adic rings}
(·)♭ // {perfect Fp-algebras}
W (·)
oo

are adjoint, i.e.,
Hom(W (A), B) = Hom(A,B♭).

The adjuncation morphisms are

R
∼−→W (R♭)

x 7→ [x1/p
n

],

θ :W (R♭)
∼−→ R∑

[xn]p
n 7→

∑
x#n p

n.

Remark 2.27. If R is a p-adic ring such that the Frobenius on R/pR is surjective,
then θmod p is R♭ → R/pR. Thus θ is surjective by Nakayama lemma and R is a
quotient of W (R♭).
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2.6. Classical points.

Theorem 2.28. Let ξ be an irreducible primitive element of degree d and θ : A�
A/ξ = OK ,K = OK [1/p].

(1) K/E is a perfectoid field with |θ([x])| = |x|.
(2) The morphism

OF −→ O♭
K

x 7−→ θ([xp
−n

])n≥0

induces K♭/F of degree d. In particular, K♭ = F if d = 1.
(3) For d = 1, this induces

|Y |cl,deg=1 = Primdeg=1/A× ∼−→
{
K/E perfectoid ,K♭ = F

}
/ ∼

(ξ) 7→ (A/ξ)[1/p]
ker θ ← [ K/E.

Thus any ξ defines a valuation

A
[
1

π
,

1

[$]

]
→ A

[
1

π
,

1

[$]

]
/ξ

|·|−→ R≥0,

and
|Y |cl = {V (ξ) | ξ ∈ A irreducible primitive } ⊂ |Y |.

We see that for y ∈ |Y |cl, k(y)/E is perfectoid and [k(y)♭ : F ] < +∞.

Theorem 2.29. Assume that F is algebraically closed.
(1) ∀y ∈ |Y |cl, k(y) is algebraically closed.
(2) ∀ξ,deg(ξ) = 1.
(3) any primitive element ξ can be written as

ξ = u(π − [a1]) · · · (π − [ad])

where u ∈ A×.

For y = V (ξ) ∈ |Y |cl, ξ =
∑

[xn]π
n is primitive of degree d, set

|ξ| = |x0|1/d = |π(y)|.
This defines the radius

| · | : |Y |cl → (0, 1).

Definition 2.30. For y = V (ξ) ∈ |Y |cl,

B+
dR,y = ξ-adic completion of A

[
1

π
,

1

[$]

]
= ÔY,y.

It is a discrete valuation ring with uniformizer ξ and residue field k(y).

2.7. Localization of zeros.

Theorem 2.31. For nonzero f ∈ B,{
− logq |y| | y ∈ |Y |cl, f(y) = 0

}
coincides the slopes of Newt(f).

Definition 2.32. For any interval I ⊂ (0, 1),
|YI |cl =

{
y ∈ |Y |cl | |y| ∈ I

}
.

Theorem 2.33. For any compact subset I ⊂ (0, 1), BI is a PID with SpmBI =
|YI |cl. In fact, SpmB = {(ξ) | |ξ| ∈ I} .
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Proposition 2.34.
B×

I = {f ∈ BI\ {0} | Newt(f) = ∅} .

Define the Robba ring the local ring of Y at origin,
R = lim←−

ρ→0+

B(0,ρ].

This is a Bezout ring.
Define

Div+(YI) = {D =
∑

y∈|YI |cl
my[y] | supp(D) is locally finite ,my ∈ N},

and
div : (BI\ {0})/B×

I −→ Div+(YI)

f 7−→
∑

ordy(f)[y].

Remark 2.35. If E = Fq((π)), I = (0, 1), the div map is a bijection if and only if F
is spherically complete (Larzard).

For any ρ ∈ (0, 1),

div : B(0,ρ]\ {0} /B×
(0,ρ]

∼−→ Div+(Y(0,ρ]).

In fact, for D =
∑

n≥0[yn] with |yn| → 0, write yn = V (ξn), the series

f =
∏
n≥0

ξnπ
− deg ξn

converges, where ξn ≡ πdeg ξ modWOE
(OF ).

2.8. Parametrization of classical points. Assume F is algebraically closed. If
E = Fq((π)), then |Y |cl = |D∗

F |cl = mF \ {0}. Thus
D∗(F ) = mF \ {0}

∼−→ |Y |cl

a 7−→ V (π − a).
If E/Qp, a ∈ mF \ {0} , y = V (π − [a]),

D∗(F ) = mF \ {0} −� |Y |cl

a 7−→ V (π − a).
But it’s hard to describe fibers.

For y ∈ |Y |cl, Cy = k(y)/E is algebraically closed. Choose π ∈ C♭
y such that

π♯ = π. Then y = V (π − [π]).
Consider the case E = Qp. It’s same for general E by using Lubin-Tate groups.

Then
Ĝm(OF ) = (1 +mF ,×)

is a Banach space as
a.ε =

∑
k≥0

(
a

k

)
(ε− 1)k,

p.ε = εp

and the fact that F is perfect.

Definition 2.36. For any 1 6= ε ∈ 1 +mF ,

uϵ :=
[ε]− 1

[ε1/p]− 1
= 1 + [ε1/p] + · · ·+ [ε

p−1
p ] ∈ A.

Lemma 2.37. uϵ is primitive of degree 1.
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Indeed,
uϵ mod p = 1 + ε1/p + · · ·+ ε(p−1)/p =

ε− 1

ε1/p − 1
∈ OF

is nonzero,
uϵ modW (mF ) ≡ 1 + [1] + · · ·+ [1] = p ∈W (kF ).

Set
Cϵ = B/uϵ = k(y)

where y = V (ε). Then ε = (ε(n)) ∈ F = C♭
ϵ , where ε(n) = θϵ([ε

1/pn

]). Then

1 + ε(1) + · · ·+ (ε(1))p−1 = θϵ(1 + [ε1/p] + · · ·+ [ε(p−1)/p]) = θϵ(uϵ) = 0,

thus ε(1) ∈ µp(Cϵ). Moreover
OCϵ/pOCϵ = A/(p, uϵ) = OF /ūϵ,

where
ūϵ =

ε− 1

ε1/p − 1
= (ε− 1)

p−1
p .

Since ε(1) − 1 ≡ ε1/p − 1mod p, ε1/p − 1 /∈ OFuϵ, ε
(1) − 1 6= 0mod p in Cϵ. Hence

ε(1) ∈ µp(Cϵ) is primitive and ε is a generator of Zp(1)(Cϵ) =
{
x ∈ C♭

ϵ | x♯ = 1
}
.

Proposition 2.38.
((1 +mF )\ {1})/Z×

p
∼−→ |Y |cl

ε 7−→ V (uϵ).

The inverse is given by y ∈ |Y |cl, Cy = k(y)/E. Choose ε a basis of Zp(1)(Cy) ↪→
(C♭

y)
× = F×. Then ε ∈ (1 +mF )\ {1} , y = V (uϵ).

Remark 2.39. Let
Y � = SpaF ×SpaFp (SpaQp)

�) = SpaF × SpaQcyc,♭
p /Z×

p = D∗,1/p∞

F /Z×
p .

where Z×
p = Gal(Qcyc

p /Qp), Qcyc,♭
p = Fp((T

1/p∞
)). The action of Z×

p is given by
a.T =

∑
k≥0

(
a
k

)
(T − 1)k. Then |Y | = |Y �| = |D∗

F |/Z×
p .

|Y ˆ̄F
|cl,GF -finite � |YF |cl

and |YF |cl = |Y ˆ̄F
|cl,GF -finite/GF = ((1 +m ˆ̄F

)\ {1})/Z×
p )

GF -finite/GF .

3. The curve X

The curve Y is Stein, it’s completely determined by the E-Frechét algebra O(Y ).
It’s preperfectoid, i.e., Y ⊗̂EK is perfectoid for a perfectoid field K/E. The Frobe-
nius ϕ acts on A by ∑

[xn]π
n 7→

∑
[xqn]π

n.

This induces the action of ϕ on O(Y ) and Y with |ϕ(y)| = |y|1/q.

Theorem 3.1. (1) Y 〈 πa

[ϖ]b
, [ϖ]c

πd 〉 = Spa(R,R◦) and R is an E-Banach algebra and
a PID.

(2) R is strongly neotherian.

Thus Y is a one-dimensonal regular adic space over E. Define
Xad := Y/ϕZ,

this is a quasi-compact adic space over E, neotherian regular of dimension one. For
0 < ρ1 < ρ2 < ρ

1/q
1 < 1,

Xad = Y[ρ1,ρ2] ∪ Y[ρ2,ρ
1/q
1 ]

.
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Remark 3.2. ϕ is the arithmetic Frobenius. ForX/Fq, there are geometric Frobenius
FrobX × Id, arithmetic Frobenius Id×Frobq and absolute Frobenius FrobX ×Frobq
on XF̄q

.

The line bundles on Xad are ϕZ-equivariant line bundles over Y , i.e., projective
ϕ-modules over B of rank 1, or free R-modules of rank 1. Thus Pic(Xad) = Z,
where n corresponds (B · e, ϕ) with ϕ(e) = π−ne.

Definition 3.3. Define O(d) corresponds (B, π−dϕ).

For a proper smooth algebraic curveX over C, the analytic partXan is a compact
Riemann surface. Conversely, given a compact Riemann surface Z, there is an
ample line bundle L over Z, e.g., O(z) for z ∈ Z, Then

Proj
(⊕
d≥0

H0(Z,L⊗d)
)

is a proper smooth algebraic curve.
We claim that O(1) is ample. Denote by

Pd = H0(Xad,O(d)) = Bφ=πd

and
P =

⊕
d≥0

Pd.

We take
X = ProjP.

Theorem 3.4. (1) X is a Dedekind scheme.
(2) There is a natural morphism of ringed spaces Xad → X inducing |Xad|cl :=

|Y |cl/ϕZ ∼−→ |X| = {closed points} such that

ÔX,x
∼−→ ÔY,y = B+

dR(k(y))

if y 7→ x. In particular, for any x ∈ |X|, k(x)/E is perfectoid.
(3)X is complete, i.e., for any x ∈ |X|, deg(x) := [k(x)♭ : F ], then deg(div(f)) =

0 for any f ∈ E(X)×. This implies we may define degree of vector bundles.
(4) There is an isomorphism

|X|deg=1 −→ {untilts of F} /FrobZ

x 7−→ k(x).

(5) If F is ac, ∞ ∈ |X|, there is t ∈ H0(X,O(1))\ {0} such that V (t) = {∞}
and X\ {∞} = SpecBe, where Be := B[1/t]φ=1.

Be is a PID and (Be,−ord∞) is non-Euclidean but almost Euclidean, i.e., for any
x, y, there is x = ay + b with deg(b) ≤ deg(y). That’s because H1(X,OX(−1)) 6= 0
but H1(X,OX) = 0.

We are going to prove that X is a curve. We assume that F is algebraically
closed. The case of general perfectoid F is treated by Galois descent from F̂ to F .

3.1. The fundamanetal exact sequence.

Proposition 3.5. P is a graded fractional ring with irreducible elements of degree
1.

For any 0 6= t ∈ P1, P [1/t]0 is fractional with irreducible elemenets {t′/t | t′ ∈ P1 − Et} .
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Proposition 3.6. Let t1, . . . , td ∈ P1\ {0} associate y1, . . . , yd ∈ |Y |cl, i.e., div(ti) =∑
n∈Z[ϕ

n(yi)] on Y . Let yi = V (ai), where ai is primitive of degree 1. Then the
sequence

0→ E ·
d∏

i=1

ti → Bφ=πd

→ B/a1 · · · adB → 0

is exact.

For example, if t ∈ P1\ {0},

0→ E · td → Bφ=πd

→ B+
dR,y/Fil

dB+
dR,y → 0

for y ∈ |Y |cl, t(y) = 0.

Proof. Exactness in the middle. Suppose f ∈ Bφ=πd ∩ a1 . . . adB is nonzero, then

div(f) ≥
d∑

i=1

[yi]

in Div+(Xad). Then

div(f) ≥
∑
n∈Z

d∑
i=1

[ϕn(yi)] = div(

d∏
i=1

ti)

and then f = x
d∏

i=1

ti for some x ∈ Bφ=1 = E.

Surjectivity. We only need to prove d = 1 case. For any x ∈ C, pnx lies in
the convergence domain of exp for n � 0. Since C is algebraically closed, there is
z ∈ C such that exp(pnx) = zp

n , thus log z = x and log : 1+mC → C is surjective.
Assume E = Qp. Let a be a primitive element of degree 1, y = V (a) and

C = Cy = B/aB. Then C♭ = F . For any ε ∈ 1 + mF , log([ε]) ∈ Bφ=p and
θ(log([ε])) = log(θ([ε])) = log ε♯, ε♯ ∈ 1 + mC . Take ε such that ε♯ = z, then
θ(log([ε])) = x. It’s same for general E by using logLT for Lubin-Tate group with
respect to (q, π). �

We are going to use the fundamental exact sequence to prove that X is a curve.
Reciprocally, once the curve is constructed, we can find back the fundamental exact
sequence by applying H0(X,−) on

0 // OX

×
∏d

i=1 ti // OX(d) // F // 0

and H1(X,OX) = 0.

Corollary 3.7. For any t ∈ P1\ {0}, t(y) = 0, y ∈ |Y |cl, C = Cy,

P/tP −→ {f ∈ C[T ] | f(0) ∈ E}
xmod tPi−1 7−→ θy(x)T

i

is an isomorphism betweem graded rings, where

P/tP = E ⊕
⊕
i≥1

Pi/tPi−1.
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3.2. Vector bundles. Let X be an integral Dedekind scheme with generic point
η. Let ∞ ∈ |X| be a closed point. Let K = OX,η be the field of rational functions
on X. We suppose that X − {∞} is affine, i.e., X − {∞} = SpecA where A =
RH0(X {∞} ,OX). Let t be a uniformizer in OX,∞.

Denote by BunX the category of vector bundles on X, i.e., locally free OX -
modules of finite rank.

Denote by C the category of triples (M,W, u), whereM is a projective A-module
of finite type, W is a free ÔX,∞-module of finite type and

u :M ⊗A ÔX,∞[1/t]
∼−→W [1/t]

is an isomorphism.

Theorem 3.8. There is an equivalence of categories
BunX

∼−→ C

E 7−→ (Γ(X − {∞} , E), Ê∞, can).

Here can is induced by Γ(X − {∞} , E) ↪→ Eη = E∞[1/t].

Moreover, if E corresponds to (M,W, u), then Γ(X,−) on E has a resolution

Γ(X, E)→M ⊕W ∂−→W [1/t],

where ∂(m,w) = u(m)− w. Thus

H0(X, E) = u(M) ∩W, H1(X, E) = W [1/t]

W + u(M)
.

Suppose X is complete. Then there is a map deg : |X| → N+ such that
deg(div(f)) = 0. Assume deg∞ = 1. Then

H0(X,OX) =
{
f ∈ K× | div(f) ≥ 0

}
∪ {0} =

{
f ∈ K× | div(f) = 0

}
∪ {0}

is a field. Denote by E = H0(X,OX) ⊂ K.
Denote by

deg = −ord∞ : A→ N ∪ {∞} .
Then E = Adeg≤0 = Adeg=0. Note that Adeg≤d = H0(X,OX(d[∞])) and ths sheaf
OX(d[∞]) corresponds (A, t−dÔX,∞, can),

H1(X,OX(d[∞])) =
K

t−dOX,∞ +A
.

In particular,
H1(X,OX(−∞)) =

K

tOX,∞ +A

is zero iff A is Euclidean, i.e., for any x, y ∈ A with y 6= 0, there is a ∈ A such that
deg(x/y − a) < 0. H1(X,OX) = 0 iff A is almost Euclidean, i.e., deg(x/y − a) ≤ 0.

Now for our X, H1(X,OX) = 0 but H1(X,OX(−1)) 6= 0, since Be is almost
Euclidean but not Euclidean.

3.3. Harder-Narasimhan filtrations. See Yves André, Slope filtrations https:
//arxiv.org/abs/0812.3921.

Consider
• an exact category C,
• an abelian categoryA,
• an exact faithful functor F : C→ A, called generic fiber functor, such that
for any X ∈ C, F induces an equivalence between strict sub-objects of X
and sub-objects of F(X), the inverse functor is called schematical closure.

https://arxiv.org/abs/0812.3921
https://arxiv.org/abs/0812.3921
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• an additive map rk : Obj(C)→ N, i.e., it factors through K0(C)→ Z, such
that rk(X) = 0 iff X = 0,
• an additive map deg : ObjC → R such that for u : X → Y , if F(u) is an
isomorphism, then degX ≤ deg Y with equality iff u is an isomorphism.

Example 3.9. Let X be a complete integral Dedekind scheme. Then k(X) = OX,η

is equipped with deg : |X| → N≥1 such that for any f ∈ k(X)×,deg(div(f)) = 0.
Take C = BunX ,A = Vectk(X), F(E) = Eη. Then the strict sub-objects of E are
locally direct factors F ⊂ E . For any V ⊂ Eη, E ∩ V is a strict sub-object of E .

The degree map induces deg : Pic(X) → Z and then deg : BunX → Z via
deg(E) := deg(det E). Then if u : E → E ′ induces an isomorphism Eη

∼−→ E ′η, then

0→ E → E ′ → F → 0

with torsion F , and deg E ′ = deg E + degF . F can be written as F = ⊕ix∗Mx

where Mx is finite length OX,x-module and

degF =
∑

lengthOx
(Mx) deg(x).

Example 3.10. If C = A is an abelian category, F = Id, we require additive maps
deg and rk, such that rk(X) = 0 iff X = 0.

Example 3.11. Let k be a field, BTk⊗Q is the category of p-divisible groups over
k up to isogeny. This is an abelian category. We take rk to be the height and deg
the dimension of associated formal group. Then the Harder-Narasimhan filtration
in this category is the slope filtration. For example,

0→ H◦ → H → Hét → 0

is part of this filtration.

Example 3.12. Let L/K be an extension. Let C be the category of vector spaces
V overK with a finitely decreasing fitration on VL. The exactness should be strictly
compatible with fltrations. Define

rk = dimK V deg =
∑

i · dimgriFilVL.

Define F : C → VectK to be the forgetful functor. Then the deserved property
follows from

deg = N dimV +
∑
i<N

dimFiliVL, N � 0.

Example 3.13. Let k be a perfect field with characteristic p, σ the Frobenius on
K0 = W (k)Q. Let K/K0 be a finite ramified extension. Denote by ϕ-ModFilK/K0

the category of (D,ϕ,FilDK) where (D,ϕ) is an isocrystal. Denote by rk =
dimK0

D, deg = tH − tN . Then semi-stable slope 0 objects are weakly admissi-
ble filtered isocrystals.

Example 3.14. Let R be a Bezout ring, E ⊂ R a field with a nontrivial valuation
v : E → R∪{−∞}. Let σ be an endomorphism that stabilizes E such that v(σ(x)) =
v(x). We assume that E× = R× and for any nonzero x ∈ R such that xσ−1 ∈ E×,
v(xσ−1) ≥ 0. Denote by C the category of (M,ϕ), whereM is a free R-module with
finite rank, ϕ is a σ-semilinear endomorphism onM such that ϕ⊗Id :M (σ) ∼−→M .
Denote F(M,ϕ) = (M ⊗R FracR, ϕ⊗ σ), rk = rkR(M),deg = −v(detϕ) = −v(a),
where det(M,ϕ) = Re, ϕe = ae.

Denote by

µ :=
deg

rk
.
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From now on in this subsection, X ⊆ Y means a strictly sub-object, thus
0→ X → Y → Y/X → 0

is exact.

Definition 3.15. X ∈ C is called semi-stable if for any nonzero strictly sub-object
C ′ ⊂ X, µ(X ′) ≤ µ(X).

Remark 3.16. Any morphism in C has a kernel and coker. The kernel of f : X → Y
is the schematical closure of ker(F(f)).

Theorem 3.17. For any nonzero X ∈ C, there is a unique filtration
0 = X0 ( X1 ( · · · ( Xn = X

such that Xi/Xi−1 is semi-simple and
µ(X1/X0) > · · · > µ(Xn/Xn−1).

Define the Harder-Narasimhan polygon HN(X) to be the concave polygon de-
fined on [0, rkX] with breaking points (rkXi,degXi), i.e., on [rkXi, rkXi+1], it has
slope µ(Xi+1/Xi).

Theorem 3.18. For any Y ⊆ X, (rkY, deg Y ) is under HN(X). Thus HN(X) is
the concave hull of (rkY, deg Y ) for all Y ⊆ X.

Theorem 3.19. The subcategory Css
λ of slope λ semi-simple objects. is an abelian

category, stable under extensions in C. Thus the Harder-Narasimhan filtrations give
a dévissage of C in (Css

λ )λ∈R.

Proof of existance. If
0→ X ′ → X → X ′′ → 0

is exact, then

µ(X) =
rkX ′

rkX
µ(X ′) +

rkX ′′

rkX
µ(X ′′) ∈ [µ(X ′), µ(X ′′)].

Here [a, b] := [b, a] if a > b, i.e., the convex hull Conv(a, b).
If

0 = X0 ( X1 ( · · · ( Xn = X

is a Harder-Narasimhan filtration of X, then
µ(X) ∈ Conv(µ(Xi/Xi−1))1≤i≤n.

Thus
inf {µ(Xi/Xi−1} ≤ µ(X) ≤ sup {µ(Xi/Xi−1} .

For nonzero X in C, consider the condition
(*) Y ⊆ X semi-stable and for any Y ′ ( Y ⊂ X, µ(Y ′) ≤ µ(Y ),
i.e., Y is maximal semi-stable sub-object of X. This is equivalent to say, any
nonzero Y ′′ ⊂ X/Y, µ(Y ′′) < µ(Y ). In fact, if Y ′′ = Y ′/Y, Y ( Y ′ ⊂ X, µ(Y ′) ∈
(µ(Y ), µ(Y ′′)) and thus µ(Y ′′) < µ(Y ).

Lemma 3.20. At most one Y ⊆ X satisfying (*).

Assume Y1, Y2 satisfy (*). Suppose Y1 6⊆ Y2, consider

Kerf // Y1
f //

!!B
BB

BB
BB

B X/Y2

Imf

⊆
;;xxxxxxxx
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Y1/Kerf → Imf is an isomorphism in generic fibers, thus µ(Y1/Kerf) ≤ µ(Imf).
But Y1 is semi-stable, µ(Kerf) ≤ µ(Y1) ≤ µ(Y1/Kerf) ≤ µ(Imf) < µ(Y2). By
symmetric, µ(Y2) < µ(Y1) if Y2 6⊂ Y1. Thus Y1 ⊆ Y2 or Y2 ⊆ Y1.

Lemma 3.21. µmax(X) := sup {µ(Y ) | 0 6= Y ⊂ X} < +∞.

Take
0 = X0 ( · · · ( Xn = X

such that 0 = F(X0) ( · · · ( F(Xn) = F(X) is a Jordan-Hölder filtration. For
nonzero Y ⊆ X, take 0 = Y0 ⊆ · · · ⊆ Yn = Y such that F(Yi) = F(Y ) ∩ F(Xi).
Consider ui : Yi/Yi−1 ↪→ Xi/Xi−1, F(ui) : F(Yi/Yi−1) ↪→ F(Xi/Xi−1). Since
F(Xi/Xi−1) is simple, Yi = Yi−1 or F(ui) is an isomorphism, thus µ(Yi/Yi−1) ≤
µ(Xi/Xi−1) and then µ(Y ) ≤ sup {µ(Yi/Yi−1)} ≤ sup {µ(Xi/Xi−1)} .

Lemma 3.22. µmax(X) is reached.

It’s clear if deg : C→ Z.
Now we take Y such that µ(Y ) = µmax(X) with maximal rank, then Y satisfies

(*).
Let’s back to the proof. Set X1 ⊂ X satisfying (*) and Xi/Xi−1 ⊂ X/Xi−1

satisfying (*) inductively. The existance then follows.
If we have such a filtration, then X1 ⊂ X satisfying (*). In fact, for Y ⊂

X/X1, 0 = Y1 ⊂ Y2 ⊂ · · · ⊂ Yn = Y such that vi : Yi/Yi−1 ↪→ Xi/Xi−1.
Then µ(Yi/Yi−1) ≤ µ(Imvi) ≤ µ(Xi/Xi−1) and µ(Y ) ≤ sup {µ(Yi/Yi−1)} ≤
sup {µ(Xi/Xi−1)} = µ(X1/X0). The uniqueness then follows by induction. �

4. Classification of vector bundles

Assume E/Qp, F/Fq is algebraically closed. Let XE/SpecE be the Fontaine-
Fargues curve.

Theorem 4.1 (GAGA, Kedlaya-Liu). There is an equivalence of categories

CohX
∼−→ CohXan .

4.1. Construction of some vector bundles. Recall XE = Proj(PE,π). Denote
by OXE

(d) the module with respect to the graded PE,π-module PE,π[d]. This is a
line bundle on XE .

Remark 4.2. XE does not depend canonically on the choice of π, but OXE
(1) does:

another choice of uniformizing element leads to an isomorphic line bundle but the
isomorphism is not canonical.

Since X is “complete”, deg(divf) = 0, we have

deg : Pic(XE) = Div(XE)/div(E(XE)
×)→ Z.

Define deg(E) = deg(det E) for vector bundle E . Take µ = deg /rk, we get Harder-
Narasimhan reduction theory.

Proposition 4.3. We have an isomorphism deg : Pic(XE)
∼−→ Z, i.e. Pic(XE) =

〈OXE
(1)〉.

This is a consequence of XE − {∞} is affine and the ring of global sections are
PID.

For E′/E, X ′
E := XE ⊗E E′. If Eh/E is unramified of degree h, then ϕEh

=
ϕh
E ,WOEh

= WOE
. Replacing E by Eh does not change YEh

= YE , it changes the
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Frobenius.
Xad

Eh

Z/nZ
��

Y ad/ϕnZ

πh

��
Xad

E Y ad/ϕZ.

Then by GAGA, we get a Z/hZ Galois cover

XEh

πh

��
XE .

Thus
(XEh

)h≥1

��
XE

is a Ẑ-pro Galois cover.
We have π∗

Eh
OXE

(d) = OXEh
(hd).

Definition 4.4. For any λ = d/h ∈ Q, (d, h) = 1, h > 0, define

OXE
(λ) = πh ∗ OXEh

(d).

It’s of rank h and degree d. It’s semi-stable of slope λ since pushforwards of a
semi-stable vector bundle by a finite étale Galois cover are still semi-stable.

We have
O(λ)⊗O(µ) =

⊕
finite
O(λ+ µ),

O(λ)∨ = O(−λ).

Hom(O(λ),O(µ)) =
⊕
finite

H0(X,O(µ− λ)

is zero if λ > µ since H0(XE ,O( dh )) = H0(XEh
,OXEh

(d)) = 0 if d < 0.

Ext1(O(λ),O(µ)) =
⊕
finite

H1(X,O(µ− λ))

is zero if λ ≤ µ since H1(XE ,O( dh )) = H1(XEh
,OXEh

(d)) = 0 if d ≥ 0.

Theorem 4.5. (1) Any slope λ semi-stable vector bundle is isomorphic to a direct
sum of OX(λ).

(2) The Harder-Narasimhan filtration of a vector bundle is split.
(3) There is a bijection between

{λ1 ≥ · · · ≥ λn | λi ∈ Q, n ∈ N}

and the isomorphic classes of vector bundles on X as

(λi) 7−→

[⊕
i

O(λi)

]
.

Remark 4.6. (1)+(2)⇐⇒ (3). Moreover, (1)⇒(2) via the computation of Ext1(O(λ),
O(µ)) = 0 if λ ≤ µ.
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In particular, denote by Bun,0X the abelian category of slope 0 semi-stable vector
bundles over X. Then we have an equivalence of categories

VectE
∼−→ Bun,0X

V 7→ V ⊗E OX

H0(X, E)← [ E .
That’s to say, a vector bundle over X is trivial iff it’s semo-stable of slope 0.

More generally, End(O(λ)) = Dop
λ , where Dλ is the division algebra over E with

invariant λ. We have an equivalence of categories

VectDλ

∼−→ Bun,λX

V 7→ V ⊗Dλ
O(λ)

4.2. From isocrystals to vector bundles. Denote by Ĕ = Êur endowed with
Frobenius σ. Denote by ϕ-ModĔ the abelian category of isocrystals, which is semi-
stable by Dieudonné-Mannin.

ϕ-ModĔ =
⊕
λ∈Q

ϕ-Modλ
Ĕ
.

For any λ, there is a unique simple object Nλ = 〈e, ϕ(e), . . . , ϕh−1(e)〉, λ = d/h
with $h(e) = πde.

We have a ⊗-exact functor
ϕ-ModĔ −→ BunX

(D,ϕ) 7−→ E(D,ϕ)

where E(D,ϕ) is the module associated to the graded P -module⊕
d≥0

(D ⊗E B)φ⊗φ=πd

.

Via GAGA, E(D,ϕ)ad is a vector bundle on Y/ϕZ corresponding to the ϕ-equivariant
vector bundle (D ⊗Ĕ OY , ϕ⊗ ϕ).

If (D,ϕ) is simple of slope λ, then E(D,ϕ) = OX(−λ). Thus via Dieudonné-
Manin classification theorem, this functor is essentially surjective.

5. Periods of p-divisible groups

The main tool is the classification theorem. Take E = Qp to simplify. Let
C/Qp be an algebraically closed field with C♭ = F . Thus there is ∞ ∈ |X| with
k(∞) = C.

Denote by BTOC
the category of Barsotti-Tate p-divisible groups over OC . We

want to explain the functor
BTOC

−→ {Modifications of vector bundles}

H 7−→ [0→ Vp(G)⊗OX → EH → i∞∗LieH[
1

p
]→ 0]

where Vp(H)⊗OX is a trivial vector bundle with fiber Vp(H), EH = E(D, p−1ϕ) is
a covariant isocrystal of the reduction of H.

5.1. Periods in characteristic p. Let k/Fp be a perfect field. A Dieudonné
crystal is a free W (k)-module of finite rank with endomorphisms F, V , where F is
σ-linear, V is σ−1-linear, FV = V F = p. Then

BTk
∼−→ {Dieudonné crystals}

H 7→ D(H).
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5.2. The covectors. Denote by
Wn = {[x0, . . . , xn−1]} =W/V nW

the ring of trucated Witt vectors of length n. It’s an affinte unipotent group scheme,
isomorphic to An

k . We have

Wn
� � V // Wn+1

� � V // Wn+2
� � // · · ·

where V ([x0, . . . , xn−1]) = [0, x0, . . . , xn−1].
Denote by

CWu := lim−→
n≥1

Wn = {[xn]n≤0 | xn = 0 for n� 0} .

the ring of unipotent Witt covectors. Here
[xn] + [yn] = [zn]

with xn = Pk(xn−k, . . . , xn, yn−k, . . . , yn), k � 0, Pk is the polynomial gives the
addition of Witt vectors∑

n≥0

V n[xn] +
∑
n≥0

V n[yn] =
∑
n≥0

V n[Pn(x0, . . . , xn, y0, . . . , yn)].

The problem of this ring is Hom(µp,CW
u) = 0 since µp is not unipotent. So we

need Fontaine’s Witt covectors. Let R be an Fp-algebra,
CW(R) := {[xn] | xn ∈ R, (xn)n≤N nilpotent N � 0} .

It’s well-define, i.e., for any n, the sequence
(Pk(xn−k,...,xn,yn−k,...,yn

))k≥0

is constant for k � 0.
We have F [xn] = [xpn], V [. . . , x−1, x0] = [. . . , x−2, x−1]. For H ∈ BTk,

D(H) = Homk(H,CWk).

It’s some kind of Pontryagin duality. The action of F, V via them on CW. Then if
M = D(H), one finds back H via

H = HomF,V (M,CW).

Example 5.1. M =W (k) · e, Fe = e, V e = pe, R is an Fp-algebra.

HomF,V (M,CW(R)) =

[xn]n≤0 | xn ∈ R, xpn = xn,
∑
n≤N

Rxn nilpotent , N � 0

 .

Thus xn = 0 for n� 0 and
HomF,V (M,CW(R)) = Qp/Zp(R).

This means M = D(Qp/Zp), Qp/Zp = {[xn]n≤0 ∈ CW | xpn = xn} .

Example 5.2. M =W (k) · e, Fe = pe, V e = e,
HomF,V (M,CW(R)) = {[xn]n≤0 | xn ∈ R, xn−1 = xn, xn nilpotent } = Ĝm(R).

Then M = D(Ĝm), Ĝm
∼−→ CWV=Id, x 7→

∑
n≤0 V

n[x].

Example 5.3. Let λ = d/h ∈ (0, 1), d ≥ 1, (d, h) = 1. Denote
Hλ = Ker(V d − Fh−d : CW→ CW)

=
{
[. . . , zp

h−d

d−1 , . . . , z
ph−d

1 , zd−1, . . . , z1] ∈ CW | z1, . . . , zd−1 nilpotent
}

the formal p-divisible group of slope λ. Then Hλ = Spf(k[[z0, . . . , zd−1]). Denote
by Mλ = D(Hλ). Then (Mλ[

1
p ], F ) is a simple isocrystal of slope λ.
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If [xk]k≥0 + [yk]k≥0 = [pk(x0, . . . , xk, y0, . . . , yk)]k≥0, then

(x0, . . . , x−d+1) +Hλ
(y0, . . . , y−d+1) = (z0, . . . , z−d+1),

z0 = lim
k→+∞

Pkd(x
pk(h−d)

d−1 , . . . , xp
k(h−d)

0 , . . . , x−d+1, . . . , x0, . . . , y0)

for the (x0, . . . , x−d+1, y0, . . . )-adic topology on k[[xi, yi]].

5.3. Period isomorphism in characteristic p. Let F/Fp be a perfectoid field, H
a p-divisible formal group over Fp. Let M = D(H) be the contravariant Dieudonné
module. Denote

BW = lim←−
V

CW = {[xn]n∈Z | (xn)n≤N is nilpotent, N � 0} .

Then
0→W → BW→ CW→ 0

is exact.
Since

H(OF ) = Hom(SpfOF ,H) = lim←−
(0) 6=a⊂OF

H(OF /a),

CW(OF ) = lim←−CW(OF /a) =

{
[xn]n≤0 | x ∈ OF , lim sup

n→−∞
|xn| < 1

}
.

We have
H(OF ) = HomW (k)[F,V ](M,CW(OF )),

H is formal if and only if F is topologically nilpotent on M and OF is perfect.

Proposition 5.4. The projection BW(OF )� CW(OF ) induces

HomW (k)[F,V ](M,BW(OF ))
∼−→ HomW (k)[F,V ](M,CW(OF )).

An inverse is given by

u 7→ [x 7→ lim
k→+∞

F−kũ(F kx)].

If (D,ϕ) = (M [ 1p ], F ), one deduces

H(OF ) = Homφ(D,BW(OF )).

Now
BW(OF ) ↪→ O(YF ) = BF ,

V n[xn] 7→ [xp
−n

n ]pn.

Thus

BW =

{∑
n∈Z

[xn]p
n | xn ∈ OF , lim sup

n→−∞
|xn|p

n

< 1

}
⊂ B+

F = O(YF ∪ {ycris})

contains all periods with slope in [0, 1].

Proposition 5.5. Homφ(D,BW(OF )) = Homφ(D,BF ).

Example 5.6. For λ = d/h ∈ (0, 1],

Hλ(OF ) = Bφh=pd

F = BW(OF )
V d=Fh−d

=

{
d−1∑
k=0

∑
n∈Z

[xp
−nh

k ]pnd+k | x0, . . . , xd−1 ∈ mF

}
.
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If λ = 1, we have an isomorphism
mF

∼−→ Bφ=p

ε 7→
∑
n∈Z

[εp
−n

]pn.

Denote by

L =
∑
n≥0

T pn

pn
∈ Qp[[T ]]

the logarithm of a p-typical formal group law F/Zp. Then
X +F Y = L−1(L(X) + L(Y )) ∈ Zp[[X,Y ]].

For X +Ĝm
Y = XY +X +Y, logĜm

= log(1+T ). Denote by E(T ) = exp(L(T )) ∈
Zp[[T ]] the Artin-Hasse map. Then E : F ∼−→ Ĝm and we have a commutative
diagram

(mF ,+F )
∼

ε 7→
∑
n∈Z

[εp
−n

]pn

//

'E

��

Bφ=p

(mF ,+Ĝm
)

∼
ε 7→log([1+ε])=t

// Bφ=p.

If λ = d/h /∈ [0, 1], Bφh=pd has no explicit description: the Banach-Colmez space
Bφh=pd is not representatble by a pefectoid space but by a diamond (algebraic space
for pro-étale topology).
5.4. Periods in unequal characteristic. Let C/Qp be an algebraically closed
field, F = C♭, H/OC a formal p-divisible group. We are going to look at the
universal cover lim←−

×p

H of H.

Proposition 5.7. There is an isomorphism lim←−
×p

H(OC)
∼−→ lim←−

×p

H(OC/pOC). The

inverse is given by sending (xn)n≥0 to ( lim
k→+∞

p−kx̃n+k)n≥0 via any lift of H(OC) =

lim←−
×p

H(OC/p
iOC)→ H(OC/pOC).

The last isomorphism comes from that H is p-divisible p∞-torsion, Hη =
◦
B

d

C ,
while ×p contracts everything to 0.

Suppose H/Fp is a p-divisible group with an identification
H⊗Fp

OC/pOC
∼−→ H ⊗OC

OC/pOC .

Take $♯ = p, then
lim←−
×p

H(OC) = lim←−
×p

H(OC/pOC) = lim←−
×p

H(OC/pOC) = lim←−
×p

H(OF /$OF )

= lim←−
×p

H(OF ) = H(OF ) = Homφ(D,BF ),

where (D,ϕ) = D(H).
Remark 5.8. More generally

lim←−
×p

Hη =
◦
B

d,1/p∞

C

is a pre-perfectoid ball Spf[[X1/p∞

0 , . . . , X
1/p∞

d−1 ]]η over C, where Hη =
◦
B

d

C . The tilt
of this is (H1/p∞ ⊗Fp

OF )η.
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Let
logH : Hη → LieH ⊗OC

Grig
a

be the logarithm of the formal group Hη. This is a morphism of rigid analytic
groups, which is an étale H(OC)[p

∞]-tower.
By applying lim←−

×p

on the exact sequence

0→ H(OC)[p
∞]→ Hη

logH−→ LieH ⊗OC
Grig

a → 0,

we get

0→ Vp(H)→ lim←−
×p

H(OC)
logH(x0)−→ LieH[

1

p
]→ 0.

Rewrite it in terms of covariant isocrystals, we get

0→ Vp(H)→ (D ⊗Q̆p
BF )

φ=p → LieH[
1

p
]→ 0.

Here let FilDC = ωHD [ 1p ] ⊂ DC be the Hodge filtration. Then DC/FilDC =

LieH[ 1p ] and the last map in the exact sequence is given by

(D ⊗Qp BF )
φ=Id //

� _

��

LieH[ 1p ]

D ⊗Q̆p
BF

id⊗θ // // DC

OOOO

Example 5.9. When H = Ĝm, this is just the fundamental exact sequence.

Proposition 5.10. Vp(H)→ (D ⊗B)φ=p induces an isomorphism

Vp(H)⊗Qp B[
1

p
]φ=Id ∼−→ (D ⊗Q̆p

B[
1

t
])φ=Id.

Use Poincaré duality, we get a perfect pairing

Vp(H)× Vp(HD)

��

∪ // Qp(1) = Qpt� _

��
(D ⊗B)φ=p × (D∗ ⊗B)φ=Id ∪ // Bφ=p.

The right hand side map is an isomorphism after inverting t.

Corollary 5.11. For any p-divisible group H/OC , the corresponding (D,ϕ,FilDC)
defines a modification of vector bundles on XF at ∞ ∈ |XF |,

0→ Vp(H)⊗Qp OX → E(D, p−1ϕ)→ i∞∗LieH[
1

p
]→ 0.

In particular, viaDC = E(D, p−1ϕ)∞⊗k(∞), u : E(D, p−1ϕ)� i∞∗DC , u−1(i∞∗FilDC)
is a trivial bundle.

6. Topics on classification theorem

6.1. Lubin-Tate space. Let H be a 1-dimensional hegith n formal p-divisible
group. Let

X = Def(H) ' Spf(W (Fp)[[X1, . . . , Xn−1]]).
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Then we have Gross-Hopkins period morphism, which is an anlog of Griffiths period
morphism.

Xη =
◦
B

n−1

Q̆p

πdR

��
Pn−1

Q̆p

Denote (D,ϕ) = D(H). Then for x ∈ X(OC) = Xη(C), πdR(x) = FilDC ⊂ DC is
a codimension 1 = dimH subspace, that is, the Hodge filtration of x∗Huniv/OC ,
where Huniv/X is a universal deformation.

Theorem 6.1 (Lafaille, Gross-Hopkins). πdR is a surjective étale cover.

That’s to say, any codimension one subspace FilDC is the Hodge filtration of a
lift of H to OC . This is a p-adic analog of Kodaira-Spencer map. The étaleness
follows from Grothendieck-Messing deformation theory.

We have E(D, p−1ϕ) = OX( 1n ).

Corollary 6.2. For any degree 1 modification of OX( 1n ),

0→ E → OX(
1

n
)→ F → 0

where F is a degree 1 torsion coherent sheaf, we have trivial E ' On
X .

Conversely,

Proposition 6.3. For
0→ On

X → E → F → 0

where F is a degree 1 torsion coherent sheaf, we have E = OX( 1d )⊕O
n−d
X , 1 ≤ d ≤ n.

The modification is given by a surjection
u : C(−1)n = (t−1B+

dR/B
+
dR)

n � L,

where L is a one-dimensional C-vector space. Here Ôn
X,∞ ⊂ Ê∞ ⊂ t−1Ôn

X,∞.
Up to replacing On

X by On−i
X and E by E ′ with E = E ′ ⊕ Oi

X , one can suppose
u : Qp(−1)n ↪→ L, i.e., u ∈ Ω(C) ⊂ Pn−1(C).

We want to prove this if u ∈ Ω(C), then E ∼= OX( 1n ). Let D = End(OX( 1n )) =

D 1
n
be the division algebra with invariant 1

n . It inducesD⊗Qp
OX

∼−→ End(OX( 1n ))

and Dop,×
X

∼−→ Aut(OX(− 1
n )) = GL(OX(− 1

n )) as X-group schemes. Thus (Dop)×X -
torsors over X (pure inner form of GLn) is equivalent to GLn-torsors on X (vector
bundle of rank n). In fact, if T is a topos, G is a group on T , T is a G-torsor in T ,
H = GT is the inner twisting of G,

[T] ∈ H1(T , G)→ H1(T , Gad) 3 [H] = [Aut(T)].
Then t 7→ Isom(T, t) induces the equivalence between G-torsors and H-torsors.

Now
0→ On

X → E → F → 0

is equivalent to
0→ OX(− 1

n
)→ E ′ → F ′ → 0

as Dop ⊗OX -module. Take dual modification, we get

0→ E ′′ → OX(
1

n
)→ F ′′ → 0

as D ⊗OX -module.
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Theorem 6.4 (Drinfeld). Any element of Ω(C) is the Hodge filtration of a special
formal OD-module.

Hence E ′′ ' D ⊗Qp
OX . The result follow by applying Hom(OX( 1n ),−).

6.2. Proof of the classification for rank two vector bundles.
Proposition 6.5. Let F be a degree one torsion coherent sheaf on X.

(1) If
0→ E → O(d1)⊕O(d2)→ F → 0

with d1 6= d2, E ∼= O(d1 − 1)⊕O(d2) or O(d1)⊕O(d2 − 1).
(2) If

0→ E → O(d)⊕O(d)→ F → 0,

E ∼= O(d− 1
2 ) or O(d− 1)⊕O(d).

(3) If
0→ E → O(d+ 1

2
)→ F → 0,

E ∼= O(d)2.
(1) by explicit computation. (2) is a consequence of Lubin-Tate case. (3) is a

consequence of Drinfeld case.
Let E be a rank 2 vector bundle on X. Then there is

0→ O(d1)→ E → O(d2)→ 0.

If d2 ≤ d1, Ext1(O(d2),O(d1)) = 0 and E = O(d1)⊕O(d2). If d2 > d1,

0 // O(d1) //
� _

��

E //� _

��

O(d2) // 0

0 // O(d2) // E ′ // O(d2) // 0.

In both cases,
0→ E → OX(d)2 → F → 0.

Let Fil• be a filtration of F such that griF is zero or degree one torsion coherent
sheaf, ∀i. Take Fil•OX(d)2 = u−1(Fil•F). Then for any i, Fili+1(OX(d)2) is
Fili(OX(d)2), or a degree one modification of Fili(OX(d)2). By induction on i ∈ Z,
we get Fili(OX(d)2) = O(k + 1

2 ) or O(k1)⊕O(k2).

6.3. Weakly admissible implies admissible. Let K/Qp be a discrete valua-
tion field with perfect residue field. Denote C = K̂,GK = Gal(K/K), K0 =
W (kK)Q, σ the Frobenius on K0. Denote by ϕ-ModFilK/K0

the category of triples
(D,ϕ,Fil•DK), where (D,ϕ) is an isocrystal and Fil• is a Hodge filtration of DK .
Define

tN = vp(detϕ)

tH =
∑

idimgriDK .

Denote

Vcris(D,ϕ,Fil
•DK) = Fil0(D ⊗K0

Bcris)
φ=Id = Fil0(D ⊗K0

B[
1

t
])φ=Id.

There is a GK-action on it.
Definition 6.6. (D,ϕ,Fil•DK) is admissible if

dimQp
Vcris(D,ϕ,Fil

•DK) = dimK0
D.

Definition 6.7. (D,ϕ,Fil•DK) is weakly admissible if tH = tN , and for any sub-
isocrystal D′ ⊂ D, tH(D′, ϕ|D′ , D′

K ∩ Fil•DK) ≤ tN (D′, ϕ|D′ , D′
K ∩ Fil•DK).
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Theorem 6.8 (Colmez-Fontaine). Weakly admissible is equivalent to admissible.

⇐ is easy.
We reinterpretate in terms of semi-stablity. Take deg = tH−tN , rk = dimK0

D,µ =

deg /rk, then ϕ-ModFilwa
K/K0

= ϕ-ModFilss,0K/K0
.

The action on GK on XC♭ stablizes ∞. For any (D,ϕ,Fil•DK), E(D,ϕ) is a
GK-equivariant vector bundle on X and Λ = Fil0(D ⊗ BdR) is a lattice in Ê∞[ 1t ].
This gives a modification of E , denoted by E(D,ϕ,Fil•DK). Then

deg E(D,ϕ,Fil•DK)

=deg E(D,ϕ) + [Fil0D ⊗BdR : D ⊗B+
dR]− tN (D,ϕ)

=deg(D,ϕ,Fil•DK),

and H0(X, E(D,ϕ,Fil•DK)) = Vcris(D,ϕ,Fil
•DK).

The classification theorem tells that, if E is a semi-stable vector bundle of slope
0, then dimQp

H0(X, E) = rkE . Now for A ∈ ϕ-ModFilK/K0
,

• A is admissible⇐⇒ E(A) is semi-stable of slope 0 and for any sub-bundle
E ′ ⊂ E(A), µ(E ′) ≤ 0;
• A is weakly admissible ⇐⇒ A is semi-stable of slope 0 and for any strict
sub-object B ⊂ A,µ(B) ≤ 0.

Proposition 6.9. There is an equivalence between the category of strict subobject
of A and GK-equivariant subobject of E(A).

If A is weakly admissible, the Harder-Narasimhan filtration of E(A) is GK-
invariant. Thus it comes from a filtration of A. Since A is semi-stable, this is
the tautological filtration and then E(A) is semi-stable, A is admissible.
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